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Abstract: In the present study, a development of the paper [Can. J. of Phy., 2012, 90(2): 137-149] is introduced. The 

non-stationary BGK (Bhatnager- Gross- Krook) model of the Boltzmann nonlinear partial differential equations for a rarefied gas 

mixture affected by nonlinear thermal radiation field, for the first time, are solved instead of the stationary equations. The 

travelling wave solution method is used to get the exact solution of the nonlinear partial differential equations. These equations 

were produced from applying the moment method to the unsteady Boltzmann equation. Now, nonlinear partial differential 

equations should be solved in place of nonlinear ordinary differential equations, which represent an arduous task. The unsteady 

solution gives the problem a great generality and more applications. The new problem is investigated to follow the behavior of 

the macroscopic properties of the gas mixture such as the temperature and concentration. They are substituted into the 

corresponding two stream Maxiwallian distribution functions permitting us to investigate the non-equilibrium thermodynamic 

properties of the system (gas mixture + the heated plate). The entropy, entropy flux, entropy production, thermodynamic forces, 

kinetic coefficients are obtained for the mixture. The verification of the Boltzmann H-theorem, Le Chatelier principle, the second 

law of thermodynamic and the celebrated Onsager’s reciprocity relation for the system, are investigated. The ratios between the 

different contributions of the internal energy changes based upon the total derivatives of the extensive parameters are estimated 

via the Gibbs formula. The results are applied to the Argon-Neon binary gas mixture, for various values of both of the molar 

fraction parameters and radiation field intensity. Graphics illustrating the calculated variables are drawn to predict their behavior 

and the results are discussed. 

Keywords: Binary Gas Mixture, Radiation Field, Exact Solutions, Travelling Wave Method, Unsteady BGK Model, 

Boltzmann Kinetic Equation, Moments Method, Liu-Lees Model, Boltzmann H-Theorem,  

Irreversible Thermodynamics 

 

1. Introduction 

It should be noted that the renewed interest to internal 

rarefied flows has been motivated by the recent development 

in the micro-electro-mechanical systems (MEMS) technology. 

In most MEMS applications, the continuum equations are 

applied with the appropriate slip boundary conditions [1, 2]. 

It is evident; however, that the approaches based on kinetic 

theory are more suitable to solve such type of the problems, 

since the whole range of the gas rarefaction can be studied in 

a uniform manner [3]. 

In spite of the fact that, the statistical-mechanical study of 

fluid mixtures far from equilibrium is a very interesting 

subject from a theoretical as well as a practical viewpoint. 

There are very few articles in the literature concerning this 

topic [4-15], compared to the huge amount of papers in the 

case of a single gas, see e.g. [16-23]. 

The general description of the system of gas mixture is 

much more complicated than that for a single fluid case. Not 

only the number of transport coefficients is much higher, but 

also they are functions of parameters such as the molar 

fractions, the mass ratios, and the size ratios. Due to the 

complexity of the general problem, tractable specific 

situations must be considered [24]. The Boltzmann equation 

provides the appropriate framework for analyzing 

non-equilibrium states in dilute gases. Nevertheless, due to 

its mathematical intricacy, only a few exact solutions are 

known [25-27]. The difficulties are much greater when the 

system is constituted by particles of different species, as one 

has to deal with a set of coupled unsteady Boltzmann 
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equations [28]. Furthermore, the transport properties depend 

on the molar fractions, the mass ratios, and the size ratios, in 

order to get explicit results [29,30]. As it is known, not the 

Boltzmann equation itself but some kinetic model is used in 

solving the majority of practical problems of the kinetic 

theory of gases [31]. This circumstance is due to the fact that 

the Boltzmann collision integral has a quite complex 

structure. One of the most significant achievements in 

rarefied gas theory in the last century is the Krook model for 

the Boltzmann equation [32].The Krook model relaxation 

equation retains all the features of the Boltzmann equation 

which are associated with free molecular motion and 

describes approximately, in a mean-statistical fashion, the 

molecular collisions. The structure of the collision term in the 

Krook formula is the simplest of all possible structures which 

reflect the nature of the phenomenon. Careful and thorough 

study of the model relaxation equation [33], and also solution 

of several problems for this equation, have aided in providing 

a deeper understanding of the processes in a rarefied gas. 

Since, every material in this universe, and hence also the 

particles of a gas absorb and radiate thermal energy, the 

interaction with the thermal radiation that is contained within 

the volume of the body may be important in gases. Since the 

latter unlike solids and liquids are capable of undergoing 

conspicuous volume changes. Taking this interaction into 

account makes the behavior of the gases more realistic. 

Radiative heat transfer in gases has important applications 

from combustion systems to modeling atmospheric processes. 

The magnitude of radiative heat fluxes can have profound 

effects on combustion performance and environmental 

impact. For this purpose, Abourabia and Abdel Wahid [21], 

and Abdel Wahid [34] have introduced a new approach for 

studying the influence of a thermal radiation field upon a 

rarefied neutral gas. This idea was applied to a steady [21] 

and unsteady problem [34] of the half space filled by a 

neutral gas specified by a flat rested heated plate in a frame 

co-moving with the gas. I will extend these papers to study 

the unsteady problem for a rarefied binary gas mixture 

affected by nonlinear thermal radiation field, for the best of 

my knowledge; this study is done for the first time at all.  

My aim in this paper is as follows: first, in section (2) to 

introduce this new unsteady approach for studying the 

influence of thermal radiation field on a rarefied neutral 

binary gas mixture. For this purpose, we use a coupled 

system of unsteady kinetic Boltzmann equations, one for 

each component of the binary mixture. I insert the radiation 

field effect into the force term of the Boltzmann equation as a 

radiation force. I follow this approach, using Liu-Lees model 

for two stream Maxwellian distribution functions and the 

moment method [16-18] to predict the behavior of the 

macroscopic properties of the binary gas mixture and various 

radiation field intensity due to different plate temperatures; 

such as the temperature and concentration which are in turn 

substituted into the corresponding distribution functions. This 

approach, in section (3), will permit us to study the behavior 

of the equilibrium and non-equilibrium unsteady distribution 

functions for various values of the molar fraction parameters. 

The important non-equilibrium thermodynamic properties of 

the system (binary gas mixture + heated plate) are calculated. 

Particularly, I obtain the entropy, entropy flux, entropy 

production, thermodynamic forces, kinetic coefficients .I 

investigate the verification of the second law of 

thermodynamic, Boltzmann H-theorem, the Onsager’s 

reciprocity relation. The ratios between the different 

contributions of the internal energy changes based upon the 

total derivatives of the extensive parameters are predicted via 

the Gibbs' formula. Section (4) shows the results and the 

discussion of applying the results to the Argon-Neon binary 

gas mixture. Finally, Section (5) indicates the important 

conclusions of the paper. 

2. The Physical Problem and 

Mathematical Formulation 

Consider a binary gas mixture consisting of monatomic 

molecules of two types, say components A and B, fills the 

upper half of the space ( 0y ≥ ), which is bounded by an 

infinite immobile flat plate (y=0), in a uniform pressure SP

[21,35]. The plate is heated suddenly to produce thermal 

radiation field. The flow is considered unsteady, and 

compressible. In a frame co-moving with the fluid the 

behavior of the binary gas mixture is studied under the 

assumptions that:  

(i) At the rested plate boundary, the velocities of the incident 

and reflected particles are equal; but of opposite sign. 

This is happened according to Maxwell formula of 

momentum defuse reflection. On the other hand the 

exchange will be due to only the temperature difference 

between the particles and the heated plate, taking the 

form of full energy accommodation [36]. 

(ii) The gas is considered gray absorbing-emitting but not a 

scattering medium. 

(iii) A thermal radiation force is acting from the heated plate 

on the binary atomic gas mixture, written in the vector 

notation [37-39] as  

3
44 16 ( , )
( , )

3 3

s s
y

s s

T T y t
F T y t F

n c n c y

σ σ− − ∂= ∇ ⇒ =
∂

� �

    (1) 

for unsteady motion, the process in the system under study 

subject to a thermal radiation force Fy can be expressed in 

terms of the Boltzmann kinetic equations in the BGK model 

[16,18, 33] written in the unsteady form, for the first time,: 

( ) ( )0 0

∂ ∂ ∂
+ + = − + −

∂ ∂ ∂
yA A A

y AA A A AB B A

A y

Ff f f
C f f f f

t y m C
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ν ν∂ ∂ ∂+ + = − + −

∂ ∂ ∂
,   (3) 

where Cy , f β  and m β are the velocity of the gas particles 

component along y-axis, the two–stream Maxwellian 
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distribution function and mass of particles of the β  type and 

A Aν , A Bν , BBν and BAν  are the collision frequencies which 

are given in [18,40,41] as: 

s p
n Vαα α αα αν σ=  

and 

s p
n Vαβ α αβ αβν σ=  

where 

8 s
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= = , (   and  or A Bα β ≡ ), where pV α , αβµ , 

effd , sn α  and αβσ  are the mean velocity of particles, the 

reduced mass, the diameter of the effective collisions sphere, 

gas concentration at the plate surface, and effective collisions 

cross section for α and β  types, respectively and 0f β  are 

the local Maxwellian distribution functions denoted by 
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where R is the gas constant and 
2 2 2 2

x y zC C C C= + + . 

Lee’s moment method [42-43], for the solution of the 

Boltzmann equation, is employed. When the application of 

heat to a gas causes it to expand, it is thereby rendered rarer 

than the neighboring parts of the gas; and it tends to form an 

upward current of the heated gas, which is of course 

accompanied with a current of the more remote parts of the 

gas in the opposite direction. The fresh portions of gas are 

brought into the neighborhood of the source of heat, carrying 

their heat with them into other regions [44]. We assume that 

the temperature of the upward going gas particles is 1T β , while 

the temperature of the downward going gas particles is 2T β [21, 

25]. The corresponding concentrations are 1n β  and 2n β .We 

use the Liu-Lees model of the two–stream Maxwellian 

distribution function near the plate [36,45] for particles of the 
β  type, which can be represented as: 

( ) ( )

( ) ( )

2
1

1 3

12
1

2
2

2 3

22
2

[ ], For   > 0     
2

2

[ ], For  < 0     
2

2

y

y

n C
f exp C

RT
RT

f
n C

f exp C
RT

RT

β
β

β
β

β
β

β
β

β

π

π

 −= ↑

= 

− = ↓



.    (4) 

The velocity distribution function f is not of direct interest 

to us, in this stage, but the moments of the distribution 

function. Therefore, we derived the Maxwell’s moment 

equations by multiplying the Boltzmann equation by a 

function of velocity ( )iQ C  and integrating over the velocity 

space. How many and what forms of iQ  will be used is 

dependent on how many unknown variables need to be 

determined and how many equations need to be solved. 

Multiplying Eqs.(2,3) by some functions of velocity 
( )i iQ Q C= , and integrating w. r. t. C, taking into consideration 

the discontinuity of the distribution function, caused by the 

cone of influence [36], the resulting equation can then be 

written as follows; for particles of each gas component β  with 

the second one α  type, 
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where x y zdC dC dC dC= . 

Equations (5) are called the general equations of transfer 

[46]. We obtain the dimensionless forms of the variables by 

taking: 
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where A Bτ , N β and dU β  are the relaxation time between 

collisions of the A-B species, non-dimensional constant and 

internal energy change of the gas species of the β  type, 

respectively. 

It is assumed that the temperature differences within the gas 

are sufficiently small such that 4( , )T y t  may be expressed as a 

linear function of the temperature. This is accomplished by 

expanding 
yF  in a Taylor series about ∞T  and neglecting 

higher-order terms [8-9,32-33], thus 4 3 4( , ) 4 ( , ) 4∞ ∞≅ −T y t T T y t T .
 

This implies that: 
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Once the expressions for 0 1,f fβ β and 2f β  are introduced, 

macroscopic quantities such as density, velocity, temperature, 

etc… can be computed from the appropriate weighted integral 

of the distribution functions as follows[36,47] ; 

Number density: 
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Hydrodynamic (bulk) velocity: 
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Temperature: 
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The static pressure normal to the plate: 
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The heat flux component: 
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In Eq.(4) there are four unknown functions, 

1 2 1 2( , ) , ( , ), ( , )and ( , )T y t T y t n y t n y tβ β β β , needed to be 

determined for each component in the binary gas mixture. 

Thus, we need four equations for each one, the equation of 

state, two moment equations, and with the condition that, we 

shall study the problem in a coordinate system of the phase 

space in which the bulk velocity u is located at the origin, to 

conform a complete set to solve the problem. Taking 
2

iQ C=

and 21

2
yC C , and substituting formula (4) into the transfer 

Eq.(5), taking (6) into consideration, to get the moments of the 

equations. 

We note that for a neutral gas, this procedure will give rise 

to 2

1Q C= (energy conservation) and 
2

2

1
 

2
yQ C C= (energy 

transport). After dropping the bars we get eight equations, four 

for each component of the binary gas mixture as follows: For 

particles of the ,A Bβ =  types, the conservation of energy 
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and the heat flux component in the y-direction 
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The above three equations, for both group of equations, 

corresponding to each species, are complemented by the 

equations of state [48-50],  

.P n T constβ β β= =                  (14) 

and with the condition that, we shall study the problem in a 

coordinate system of the phase space in which the bulk 

velocity u is located at the origin. Thus, using Eq.(8), we get 

the fourth equation: 
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2 2
1 1 2 2

0n T n Tβ β β β
 

− = 
 

           (15) 

I will use the traveling wave solution method [51-52], to 

solve the problem, considering  

ly m tξ = −                  (16) 

Such that to make all the dependent variables as functions 

ofξ . Here l and m are transformation constants, which do not 

depend on the properties of the fluid but as parameters to be 

determined by the boundary and initial conditions [29]. From 

Eq.(16) we get the derivatives:  
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where a is a positive integer. 

Substituting from Eqs. (16-17) into Eqs. (12,13) we get: 
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and 
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Know, I intend to solve Eqs.(14,15,18,19) to obtain the 

solution of the initial and boundary value problem for each of 

the gas components to estimate the four unknowns 

1 2 1 2, , and T T n nβ β β β . 

From Eq.(15), we have 

2 2 1 1 .=n T n Tβ β β β              (20) 

Substitution from Eqs.(14 and 20 ), with the help of Eq.(10), 

into Eq.(18), we obtain: 
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Integrating Eq. (21), with respect to ξ , we obtain after 

factorization 
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where , we put 
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and 2
C β  is the integration constants. It's easy to show that 
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pressure uniformity since ( )2 1
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For sampling the calculation, and for making the better 

usage of Eq. (20), we assumed a function ( )G β ξ  in the form: 
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β β
β β

β β β β β β

θ θ θ θ
ξ ξ

ξ ξ
θ θ θ θ

+ −
= =

= =
+ −

    (25) 

After performing some algebraic manipulations, we can 

integrate Eq. (19) with respect to ξ , with the help of Eqs. (14 

and 22), obtained:  

( ) ( )
( )

2

1 1 2 22 2

1 1 2 2

1 2

1 2 3

5 3

4 2

,
AB AB

n T n T
l n T n T lN

n n

m

β β β β
β β β β β

β β

ββ βα
β β β

ν ν
ξ θ θ θ

ν ν

+
 + +  +

  
= + + +   

  

  (26) 

where 3βθ  is the integration constant. 

Substituting from Eqs. (25) into Eq. (26), yields: 

9 7 2 2

1 1 2

5 4 4 3 6

1 2 1

6 8

2 38

1 2 2

7

2

3 -12

18 4
1

(80 -3 ) (- 1024 0
1024

( 1024 960

3 1024 ))

 
 + 
 +
  
 + =     + − + + 
 

  + +  
  AB AB

lN lN G

lN G l G

N G
G

m l

lN

β β β β

β β β β β β

β β β β
β

β β β

ββ βα
β β

θ θ θ

θ θ θ

θ θ
θ θ θ

ν ν
θ ξ

ν ν

  (27) 

Solving it by the aid of symbolic software, we obtain eight 

roots for ( )G β ξ . We keep into consideration the root that 

preserves the positive signs of both temperature and 

concentration. 

The values of the constants 1 2 3,   and   β β βθ θ θ  can be 

estimated under the initial and boundary conditions (as 
( , ) (0, 0) 0y t ξ= ⇒ = ): 

( )1 2( 0) ( 0)

2

n n
C

β β
β

ξ ξ= + =
=            (28) 

where 
s

s

n
C

n

β
β = is the molar fraction. 

1 1 2 2

1 2

( 0) ( 0) ( 0) ( 0)
1

( 0) ( 0)

 = = + = =
=  = + = 

n T n T

n n

β β β β

β β

ξ ξ ξ ξ
ξ ξ

   (29) 

1 1

2 2
1 1 2 2

( 0) ( 0) ( 0) ( 0) 0n T n Tβ β β βξ ξ ξ ξ
 

= = − = = = 
 

 (30) 

The temperature of the incident particles is assumed to be T2 

while the temperature of the reflected particles from the plate 

is the temperature T1, they are related such that[53,54] 

2 1( 0)  ( 0) :  0 1,T Tβ β β βξ χ ξ χ= = = < ≤      (31) 
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where βχ  is the ratio between the plate and gas 

temperatures.  

The parameter βχ  can take arbitrary positive value less 

than unity to guaranty that the plate is hotter than the gas. 

We can obtain by solving the algebraic system of Eqs. 

(28-31) that  

( )

1 2

1

2

2
( 0) 2 , ( 0)

1

2 1
, ( 0)  

1

and ( 0) .

C
n C n

C
T

T

β
β β β

β

β
β

β β

β β

ξ ξ
χ

ξ
χ χ

ξ χ

 
 = = − = =
 + 

   
   = =
   +   

= =

      (32) 

The above four quantities represent the initial and boundary 

conditions. 

By substituting from (32) into (23), to obtain 

1 1

4 4
1 2

2    , -     ,Cβ β β β βθ θ χ χ
−

= =         (33) 

then from (32) into (26),we got  

1

4

3

1 4 ( 1 )

2 (5 ( 5 3 ) 5 )

mC

lC N

β

β

χ χθ
χ χ χ

 
− + + =

 
+ − + +  

     (34) 

By the way of introducing the obtained quantities 

1 2 1 2, , and T T n n  into the two stream Maxwellian distribution 

function;  

2
1

1 3

12
1

2
2

2 3

22
2

[ ] ,For   >0 

[ ] , For   <0 

y

y

n C
f exp C

T
T

n C
f exp C

T
T

β
β

β
β

β
β

β
β

 −=



− =



        (35) 

we can get the sought distribution functions. These estimated 

distribution functions of the gas particles enable one to study 

their behavior in the investigated system, which is not possible 

by taking the way of the solution of Navier–Stokes equations. 

This will be the starting point to predict the irreversible 

thermodynamic behavior of the system in the next section. 

3. The Non-Equilibrium Thermodynamic 

Properties of the System 

The everyday resorts to the linear theory of the 

thermodynamics of irreversible processes still constitute great 

interests [55-60]. This is associated both with the general 

theoretical importance of this theory and its numerous 

applications in various branches of science. It is 

unquestionable that the concept of entropy has played an 

essential role both in the physical and biological sciences [61]. 

Thus, we start the thermodynamic investigations of the 

problem from the evaluation of the entropy S  per unit mass 

of the binary gas, which is written as [62]: 

1( , )
B

A

S y t Sβ β
β

ρ ρ−

=

= ∑              (36) 

whereS β is the entropy of the gas species of the β  type. It is 

denoted by[63]:  

1

1 3
3

2
2 1

2

2 3

2
2

3 4ln

( , ) .
8

3 4 ln

   
   −   
   

   = − =
      
 + −  
       

∫

n
n

T
S y t f Logf dc

n
n

T

β
β

β

β β β

β
β

β

π
 

The y-component of the entropy flux vector has the form 

[64]: 

( , ) ( , )
B

y y

A

J y t J y tβ
β =

= ∑              (37) 

where y
J β  is the y-component of the entropy flux of the gas 

species of the β  type. It is denoted by : 

1

1 1 3

2
1

2

2 2 3

2
2

1

( , )
2

1

   
   − −   
   

   = − =
      
 −  
       

∫y y

n
n T Ln

T
J y t c f Logf dc

n
n T Ln

T

β
β β

β

β β β

β
β β

β

π
 

The Boltzmann's entropy production [56-60] in the unsteady 

state Sσ is expressed as: 

( , )
( , )    ( , )

∂= +∇ ⋅
∂S

S y t
y t J y t

t
σ          (38) 

Following the general theory of thermodynamic [65-70], 

we could estimate the thermodynamic forces; the first 

corresponding to the change in the concentration nX , as: 

( , )
( , ) ,

( , )

∆ ∂=
∂n

y n y t
X y t

n y t y
              (39) 

The second thermodynamic force corresponding to the change 

in the temperature TX , as:  

( , )
( , )

( , )
T

y T y t
X y t

T y t y

∆ ∂=
∂ .            (40) 

The third thermodynamic force corresponds to the change 

in the radiation field energy RX , as: 

( , )
( , ) ,

( , )

R
R

R

U y ty
X y t

U y t y

∂∆=
∂         (41) 
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where 
4

416
( , ) ( , )

3

s
R

s B s

T
U y t T y t

cn K T
β β

σ 
=  
 

 is the dimensionless 

radiation field energy influences the gas particles and y∆ is 

the thickness of the layer adjacent to the flat plate in units of 

the mean free path-the distance between two collisions of the 

gas particles-in dimensionless form. 

After calculating the thermodynamic forces and the entropy 

production, we can obtain the kinetic coefficients Lij from the 

relationship between the entropy production and the 

thermodynamic forces, via the form [58, 59]: 

( )1 2 3

11 12 13 1

21 22 23 2

31 32 33 3

( , )

0

S ij i j

i j

y t L X X

X X X

L L L X

L L L X

L L L X

σ =

=

  
   ≥  
  
  

∑∑

           (42) 

This constituted the restriction on the sign of 

phenomenological coefficients ijL , which arise as a 

consequence of the second law of the thermodynamics [58], 

which can be deduced from the standard results in algebra. 

The necessary and sufficient conditions for ( , ) 0s y tσ ≥  

are fulfilled by the determinant  

0ij jiL L+ ≥                (43) 

and all its principal minors are non-negative too. Another 

restriction on ijL  was established by Onsager (1931). He 

found that, besides the restriction on the sign, the 

phenomenological coefficients verify important symmetry 

properties. Invoking the principle of microscopic reversibility 

and using the theory of fluctuations, Onsager was able to 

demonstrate the symmetry property that is denoted by,  

ij jiL L=               (44) 

which is called the Onsager's reciprocal relations.  

The Gibbs formula for the variation of the internal energy 

applied to the system (binary gas mixture + heated plate), 
( , )dU y t  is  

( , ) ( , ) ( , ) ( , )= + +S V RdU y t dU y t dU y t dU y t   (45) 

The internal energy change due to the variation of the 

extensive variables, such as entropy SdU , volume VdU  and in 

addition the temperature gradient produced by the thermal 

radiation field RdU , are respectively read for a binary gas [62], 

as follows:  

1( , )
B

S S

A

dU y t dUβ β
β

ρ ρ−

=

= ∑  , 

where  

( , ) ,
S

dU y t T dSβ β β=              (46) 

1( , )
B

V V

A

dU y t dUβ β
β

ρ ρ−

=
= ∑ , where  

( , ) ,
V

dU y t P dVβ β β= −       (47) 

1( , )
B

R R

A

dU y t dUβ β
β

ρ ρ−

=
= ∑ , where  

4 ( , )
( , )R

T y t
dU y t y

y

β
β βω

∂
= ∆

∂
, 

416

3

s

s B s

T

cn K T
β

σω = .  (48) 

The pressure and change in volume are

2
 and

dn
P n T dV

n

β
β β β β

β

= = −  respectively, and 

,  
n n S S

dn t y dS t y
t y t y

δ δ δ δ∂ ∂ ∂ ∂= + = +
∂ ∂ ∂ ∂  and 1, 1y tδ δ= = . 

4. Results and Discussion 

We investigated the behavior of the binary gas mixture 

under the influence of a non-linear thermal radiation field in 

the unsteady state of a plane heat transfer problem in the 

system (binary neutral rarefied gas mixture + heated plate). 

The thermal radiation is introduced, in the force term of the 

Boltzmann equation for a rarefied gas subject to [71]  the 

inequalities dλ δ≫ ≫ , where 1/ 3nδ −= is the average spacing 

between the molecules, both λ  and d are the mean free 

path and the molecular diameter, respectively. In all 

calculations and figures, we take the following parameters 

values from [72, 73] for the Argon-Neon binary gas mixture, 

where the particles of the A and B components are the argon 

and neon gases, respectively:  

5 -2 -1 -4

-1 -1 -23 -1

8 -1 18 -3

-27

1000 ; 5.6705 10  J.m .sec .K ;

8.3145 J.K .mol ; 1.3807 ?  10 J.K ;

  2.9979 10 m.sec ; 3 10 m ;  

39.948 ; 20.183 ;

=1.6605 ?  10 Kg is atomic mass unit;

−= = ×

= =

= × = ×
= =

s s

B

s

A u B u

u

T K

R K

c n

m m m m

m

σ

 

-10
 

2 -1 3

-10
 

2 -1 3

= 3.84 10 m; 1.017m;

6.45 10 m.sec ; =1.577 10 sec;

=2.425 10 m; 2.551m;

9.077 10 m.sec ; =2.81 10 sec;

for a fixed 0.5; (1000K) 0.609694,

 (1000K) 1.20676 ,  

× =

= × ×

× =

= × ×
= =

=

A A

TA A

B B

TB B

A A

B

d

V

d

V

C N

N

λ

τ

λ

τ
 

where BK , TV β and βτ are Boltzmann constant, thermal 

velocity, and the relaxation time of the gas species of the β  

type, respectively.  

Although we calculate all the sought variables in three 

various radiation field intensities due to different plate 

temperatures ( T = 800K ,1000K ,1400K ), we particularize 
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our graphics in one case corresponding to (T =1000K ), to 

economize the figures and illustrations. 

All figures show that all variables satisfy the equilibrium 

condition where the variables are in the equilibrium (as 1χ = ) 

as follows: 

( 1) 1,  ( 1) 1,  ( 1)

'  maxmum value, ( 1) 0, ( 1) 0,

 ( 1) 0,  ( 1) 0,  ( 1) 0,

 ( 1) 0,  ( 1) 0,  

S

V R T

n R

n T S

It s dU

dU dU X

X X

χ χ χ
σ χ χ

χ χ χ
χ χ

= = = = = =
= = = =

= = = = = =
= = = =

 

see figures (1 to 10-a). 

 

Figure (1-a). Concentration n vs. t and χ at CA =0.5, y=0.3. 

 

Figure (1-b). Concentration n vs. t and CA at χ=0.66, y=0.3. 

 

Figure (2-a). Temperature T vs. t and χ at CA =0.5, y=0.3. 

 

Figure (2-b). Temperature T vs. t and CA at χ=0.66, y=0.3. 

 

Figure (3-a). Entropy S vs. t and χ at CA =0.5, y=0.3. 

 

Figure (3-b). Entropy S vs. t and CA at χ=0.66, y=0.3. 

 

Figure (4-a). Entropy production σs vs. t and χ at CA =0.5, y=0.3. 
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Figure (4-b). Entropy production σs vs. t and CA at χ=0.66, y=0.3. 

 

Figure (5-a). dUS vs. t and χ at CA =0.5, y=0.3. 

 

Figure (5-b). dUS vs. t and CA at χ=0.66 , y=0.3. 

 

Figure (6-a). dUV vs. t and χ at CA =0.5, y=0.3. 

 

Figure (6-b). dUV vs. t and CA at χ=0.66 , y=0.3. 

 

Figure (7-a). dUR vs. t and χ at CA =0.5, y=0.3. 

 

Figure (7-b). dUR vs. t and CA at χ=0.66 , y=0.3. 

 

Figure (8-a). Thermodynamic force XT vs. t and χ at CA =0.5, y=0.3. 
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Figure (8-b). Thermodynamic force XT vs. t and CA at χ=0.66 , y=0.3. 

 

Figure (9-a). Thermodynamic force Xn vs. t and χ at CA =0.5, y=0.3. 

 

Figure (9-b). Thermodynamic force Xn vs. t and CA at χ=0.66 , y=0.3. 

 

Figure (10-a). Thermodynamic force XR vs. t and χ at CA =0.5, y=0.3. 

 

Figure (10-b). Thermodynamic force XR vs. t and CA at χ=0.66, y=0.3. 

 

Figure (11-a). Kinetic coefficient 
12 21

L L≡  vs. t and CA at χ=0.66, y=0.3. 

Now, we will discuss the behavior of the gas particles far 

from the equilibrium state; while the number density n 

decreases, with increasing time, the temperature T increases, 

these happen for all values of χ , this is due to the fact of the 

uniform pressure, see figures (1,2-a). Similarly, while the 

number density n increases, with increasing time, the 

temperature T decreases, these happen for all values of AC , 

this is due to the fact of the uniform pressure, see figures (1,2- 

b). It is shown from figures (3,4-a,b) that the entropy S always 

increases with time and the entropy production Sσ has a 

nonnegative values for all values of t , χ and the molar 

fraction AC . This gives a complete satisfaction of the second 

law of thermodynamics, the Boltzmann H-theorem and this 

behavior agrees with the famous Le-Chatelier principle. 

The behavior of the different contributions of the internal 

energy change can be illustrated in figures (5, 6, 7-a,b). The 

numerical ratios between the different contributions of the 

internal energy changes based upon the total derivatives of the 

extensive parameters are predicted via the Gibbs formula. 

Taking into consideration their different tendencies, the 

maximum numerical values of the three contributions at 

various radiation field intensity (corresponding to various 

plate temperatures), are ordered in magnitude as follows: 

(a) For a fixed value 0.5AC =  and variable values of χ  

in the considered range ( 0.65< 1χ < ), see figures (5-a, 

6-a, 7-a), we had:. 
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(1000) : (1000) : (1000) 1: 0.26 : 0.5

(1400) : (1400) : (1400) 1: 0.33 : 3

∼

∼

S V R

S V R

dU dU dU

dU dU dU
 

Figure (5-a) indicated that, RdU reaches its maximum 

numerical value at 0.65χ = which means that the more the 

temperature difference, between the temperature of the plate 

surface and the temperature of the binary gas mixture particles, 

the more will be the effective contribution of the thermal 

radiation energy in the total energy change of the system. This 

is attributed to the behavior of the corresponding values of the 

thermodynamic force  RX itself, see figure (10-a). 

(b) For a fixed value ( 2 / 3χ = ) and variable values of AC  in 

the considered range ( 0.2< 0.95AC < ), figures (5-b, 6-b, 

7-b), we had: 

(1000) : (1000) : (1000) 1: 0.1: 0.297

(1400) : (1400) : (1400) 1: 0.125 :1.4

∼

∼

S V R

S V R

dU dU dU

dU dU dU
 

The contribution of RdU  reaches its maximum numerical 

value at the values of 0.2 AC = and 0.8BC =  which represent 

indirectly the concentrations of the heavier gas (Argon ), and 

the lighter gas (Neon) respectively. This means that, the more 

the lighter mass of the gas species, the more the effectiveness 

of the thermal radiation energy contribution in the total energy 

change of the system, see figure (5-b).This is also due to the 

behavior of the corresponding value of the thermodynamic 

force  RX  itself corresponding to each component in the 

binary gas mixture, see figure (10-b). 

 

Figure (11-b). Kinetic coefficient 
12 21

L L≡  vs. t and χ at CA =0.5, y=0.3. 

The thermodynamic force due to the gradient of 

temperature TX will have the opposite direction to the 

thermodynamic force due to the gradient of the density nX , see 

figures (8,9-a,b) .This gives a qualitative agreement in the 

behavior studied in [71], comparing with the same (Ar-Ne) 

mixture at the same molar fraction 0.5AC = .  

According to our calculations, the restrictions imposed on 

the kinetic coefficients ijL  are satisfied where 11 0L ≥  , 

22 0L ≥  and 33 0L ≥ , for all values in the considered ranges of 

the taken values for both of χ and AC  .The celebrated 

Onsager's reciprocal relations are satisfied, where we have 

( )12 21 13 31 32 23,  and L L L L L L≡ ≡ ≡ , for all values in the 

considered ranges for χ and AC , see figures (11,12,13-a,b).  

 

Figure (12-a). Kinetic coefficient 23 32
L L≡  vs. t and CA at χ=0.66, y=0.3. 

 

Figure (12-b). Kinetic coefficient 
23 32

L L≡  vs. t and χ at CA =0.5, y=0.3. 

 

Figure (13-a). Kinetic coefficient 31 13
L L≡  vs. t and CA at χ=0.66, y=0.3. 

 

Figure (13-b). Kinetic coefficient 31 13
≡L L  vs. t and χ at CA =0.5, y=0.3. 
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5. Conclusions 

By analyzing the results, we conclude that: 

a) The active controlling factors, which are directly 

proportional to the effectiveness of the radiation energy 

in the total energy change of the system, are: 

b) The ratio between the temperature of the plate surface 

and the gas mixture particles, ii) The mass ratio between 

each component of the binary gas mixture, iii) The molar 

fraction of each component of the mixture.  

c) At a relatively high temperature ( 1000KT ≥ ), the 

radiation energy contribution in the total internal energy 

change becomes the dominated one and cannot be 

ignored at all. 

d) At a relatively small temperature ( 600KT < ), the radiation 

energy contribution in the total internal energy change, in 

the considered system, become less by orders of 

magnitude than the other kinds of energy contributions. 

e) The lighter gas component (Neon) of the binary gas 

mixture is affected by the non-linear thermal radiation 

field more than for the heavier one (Argon). 

f) The second law of thermodynamics, the Boltzmann 

H-theorem, the Le-Chatelier principle, the Onsager's 

inequality and the Onsager's reciprocal relations, are all 

satisfied for the studied binary mixture system.  

g) The negative sign at some of the kinetic coefficients, 

corresponding to cross effects, imply in these cases that 

there is a heat flux opposite to the main flux due to the 

imposed thermodynamic force (gradient). For example, 

the negative sign in front of 12TnL L= and 13RnL L= , 

implies that there is a flow caused by the temperature 

gradient, from a lower to a higher temperature, known as 

thermal diffusion (or Soret effect) which gives a 

qualitative agreement with the study [71].  
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