
 

American Journal of Physics and Applications 
2016; 4(2): 57-63 

http://www.sciencepublishinggroup.com/j/ajpa 

doi: 10.11648/j.ajpa.20160402.14 

ISSN: 2330-4286 (Print); ISSN: 2330-4308 (Online)  

 

The Modified Tolman-Oppenheimer-Volkov (TOV) Equation 
and the Effect of Charge on Pressure in Charge Anisotropy 

Petarpa Boonserm
1, *

, Napasorn Jongjittanon
2
, Tritos Ngampitipan

3
 

1Department of Mathematics and Computer Science, Faculty of Science, Chulalongkorn University, Bangkok, Thailand 
2Department of Physics, Faculty of Science, Chulalongkorn University, Bangkok, Thailand 

3Faculty of Science, Chandrakasem Rajabhat University, Bangkok, Thailand 

Email address: 
Petarpa.Boonserm@gmail.com (P. Boonserm), njongjittanon@gmail.com (N. Jongjittanon), tritos.ngampitipan@gmail.com (T. Ngampitipan) 
*Corresponding author 

To cite this article: 
Petarpa Boonserm, Napasorn Jongjittanon, Tritos Ngampitipan. The Modified Tolman-Oppenheimer-Volkov (TOV) Equation and the Effect of 

Charge on Pressure in Charge Anisotropy. American Journal of Physics and Applications. Vol. 4, No. 2, 2016, pp. 57-63.  

doi: 10.11648/j.ajpa.20160402.14 

Received: February 28, 2016; Accepted: March 18, 2016; Published: March 25, 2016 

 

Abstract: The Tolman-Oppenheimer-Volkov (TOV) equation describes the interior properties of spherical static perfect fluid 

object as a relationship between two physical observables - pressure and density. For a fluid sphere object, which contains 

electric charge, magnetic field, and scalar field, the pressure becomes anisotropic. In the previous article [Phys. Rev. D 76 (2007) 

044024; gr-qc/0607001], we deformed TOV in terms of ���  and ��� , and we found a new physical and mathematical 

interpretation for the TOV equation. In this work, we cannot use the perfect fluid constrains because of the electromagnetic field 

and the massless scalar field within this object. The TOV equation was thus generalized to involve the electromagnetic and the 

scalar fields. This model is close to the realistic objects in our universe such as a neutron star. In this paper, we consider the 

modified TOV equation for Schwarzschild coordinates in a special case. The density is considered as a constant and the scalar 

field is considered absent. On the general model of the TOV equation, the pressure is expressed in terms of radius. However, this 

model shows that pressure is affected by electric charge. Moreover, we also calculate the rigorous bound on the transmission 

probability for the Tolman-Bayin type of charged fluid sphere. 
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1. Introduction 

Several general relativistic isotropic stars can be modeled 

by perfect fluid spheres [1-2]. A perfect fluid is one with no 

viscosity, shear stresses, or heat conduction. It is one of the 

exact solutions to the Einstein’s field equation, which is the 

core equation of general relativity established by Einstein in 

1915. A perfect fluid, as a solution to the Einstein’s field 

equation, interests physicists because the equation seems 

impossible to be solved exactly. Therefore, solving for a 

perfect fluid poses a great challenge. Several perfect fluid 

sphere solutions have been generated in literature by directly 

solving Einstein’s equation. These known solutions can also, 

alternatively, be generated by algorithmic techniques [2]. One 

of the algorithmic techniques is the solution generating 

theorem [3]. These generating theorems can produce new 

solutions for perfect fluid spheres without directly solving the 

Einstein’s field equation. Sometimes, already known solutions 

are recovered. Sometimes, new (previously unknown) 

solutions are obtained. Moreover, these theorems can also be 

used as criteria to classify metrics into seed and non-seed 

metrics [3]. Furthermore, by rewriting theses theorems in 

terms of pressure and density, we obtain new solutions for the 

Tolman–Oppenheimer–Volkov (TOV) equation [4]. When 

charges are added into perfect fluid spheres, new features arise. 

These charges make the fluid spheres anisotropic. Anisotropic 

spheres can be used as models for many charged stars [10]. 

Moreover, the charges can change the pressure and density 

profile of stars [4]. The scalar field can also make fluid spheres 

anisotropic [5]. With charge and scalar field, a generalized 

TOV equation is formed [10]. In this project, generating 

theorems will be developed for anisotropic spheres. Following 
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development, the generating theorems will be applied to some 

known anisotropic spheres. The solution generating theorems 

for perfect fluid spheres can be found in reference [3]. These 

theorems facilitate us in terms of not having to solve the 

Einstein's field equation directly to obtain new solutions.  

For the solution generating theorems, the theorem 

transformations are based on spacetime geometry. But as for 

physical measurements, an object can more easily be observed 

in terms of mass and energy rather than the geometry of 

spacetime around it. Because the object’s matter can be 

expressed by energy-momentum-stress tensor in terms of 

pressure and density, the solution generating theorems should 

be applied on the physical observables: pressure and density. 

In addition, this paper is based on general relativity. One of the 

exact solutions to Einstein’s equation is a perfect fluid sphere. 

Perfect fluid spheres can be made anisotropic by the existence 

of charge and scalar field. This consequently results in a more 

complicated form of the Einstein’s equation, which is 

evidently more difficult to solve. 

The relationship between the pressure and density profile is 

given in the Tolman-Oppenheimer-Volkov [TOV] equation [4]; 

��(�)�� = − �
(�)��(�)���(�)����(�)����������(�)� � ,         (1) 

��(�)�� = 4��(�)��.               (2) 

These equations are inertia solution of static perfect fluid 

sphere objects, which are derived from the Schwarzschild 

metric. For the two physical observables, it is also easy to 

check for physical reasonableness of the quantities. Assuming 

that we obtain the pressure �!  and the density �! , we can 

transform them to new solutions in terms of � + ��  and � + ��, and take the TOV equation as a Riccati equation. 

Referring to the article by P. Boonserm et al. [4], the 

solution generating theorems for the TOV equation has been 

developed as follows.  

Theorem (P1) [4]. Let �!(�)  and �!(�)  solve the TOV 

equation, and hold #!(�) = 4� $ �!(�)��%� as fixed. Define 

an auxiliary function &!(�) by 

&! = �'(�)����'(�)���������'(�)/�� .               (3) 

Then the general solution to the TOV equation is �(�) =�!(�) + ��(�) where 

��(�) = )�*+����'/� -.�/�� $ 0'���' 1����)�* $ 2+23��'/� -.�/�� $ 0'���' 1����' ,     (4) 

where ��� is the shift in the central pressure. 

Theorem (P2) [4]. Let �!(�)  and �!(�)  solve the TOV 

equation, and hold &! fixed, such that  

&! = �'(�)����'(�)���������'(�)/�� = �(�)����(�)���������(�)/�� .        (5) 

Then the general solution to the TOV equation is given by �(�) = �!(�) + ��(�) and #(�) = #!(�) + �#(�) where 

�#(�) = ����)
*4����0'�� 56� /2 $ &! ���0'���0' %�1,      (6) 

and  

��(�) = − )����� ��8��'������'/� .            (7) 

Here ��� is the shift in the central density. By explicitly 

combining these formulae we have 

��(�) = ����1 + �&!�� 1 + 8��!��1 − ��'�   
∗ 56� <2 = &! 1 − �&!1 + �&! %��

! >, 
and 

��(�) = − 1�� %%� ? ��(�)�41 + 2�&!(�)@. 
2. Charged Fluid Spheres 

2.1. Anisotropic Fluid Spheres and Generalized TOV 

Equation 

The perfect fluid sphere possesses key properties such as 

the isotropy of pressure with no viscosity, shear stresses, or 

heat conduction. Using perfect fluid spheres, stars in our 

universe can be modeled. If charges are added to a perfect 

fluid sphere, the latter becomes anisotropic. An anisotropic 

sphere can also be made by a scalar field. Perfect fluid spheres 

are the first approximation of solution for many objects. 

However, there are also many other spherical objects that do 

not fit the properties of perfect fluid spheres. One kind of such 

object is a neutron star. The radial pressure of the stars differs 

from the transverse pressure. The applied idea for these stars is 

referred to as anisotropic fluid spheres.  

ABCDE = F� 0 0 00 �� 0 00 0 �H 00 0 0 �H
I. 

We define new solution of charged fluid spheres as the 

metric of spacetime 

%J� = −K!(�)�%L� + ���M'(�) + ��%N�        (8) 

or with the notation OK!, P!Q by setting R�̂�̂ − RTUTU = 8�V, 
where ∆ is an arbitrary function in terms of radius r. The 

Einstein’s tensors were written in a non-coordinate form, 

which represents an observer’s view of physical quantities. 

2.2. Modeling Static Anisotropy 

For describing the inertia properties of anisotropy, we need 
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to modify the new energy momentum stress tensor for 

anisotropy. It can be modeled in terms of a linear combination 

of the “perfect fluid”, “electromagnetic field”, and “massless 

scalar field”, 

From the definition [10], the tensor for perfect fluid spheres 

is 

AXBD = Y�X + �XZ [B[D + �X&BD . 
The tensor for electromagnetic field is 

A-�BD 
 \B�&��\D� � 14 &BD�\��\��	. 
The tensor for (minimally coupled) massless scalar field is 

A]BD 
 ^;B^;D � 12 &BD`&�� ;̂�^;�a. 
Using the covariant conservation of total stress energy, ABD;D = 0, we obtain a relation of perfect fluid density with 

pressure, scalar field, and the field strength tensor of the 

electromagnetic field  

`�X " �Xa[B;D[D " &BD Yb�Xc;D " d]^;DZ � \BD�d-�[D	 
 0, 
After we obtain the equation of anisotropy in terms of 

pressure and density, we have to assume that the equation must 

be equivalent to the TOV equation.  

This is the modified TOV equation [10] 

��e�� 
 � b
e��ec����	����e���
���������	� �             (9) 

� d-�f
g1 � ����	�

� d] %%̂� , 
���� 
 4���� 
 4�`�X " �-� " �]a��,      (10) 

where �X , �-� , �] , d-� , d] , and ^ represent perfect fluid 

density, electromagnetic density, electromagnetic charge, and 

the massless scalar charge and field, respectively.  

3. The Effect of Charge on Pressure 

3.1. Special Case: When h Is Constant and ij Is Zero 

In this case, the generalized TOV equation becomes 

��e�� 
 � b
e��ecb���	����e��c
���������	� � � kl�m

g������	�
,      (11) 

supplemented with 

���� 
 4���� 
 4�`�X " �-�a��.         (12) 

Integrating the above equation, we obtain 

#��	 
 �4 ���4.                (13) 

Substituting #��	 into the generalized TOV equation, we 

can numerically solve for �X as shown in Figure 2. 

 

Figure 1. The fluid pressure as a function of radius. 

3.2. The Effect Between Charge and Pressure 

In this part, we will investigate how the charge affects the 

pressure in an anisotropic fluid sphere. From equation (11), 

we set the mass, density, and electric field fixed, and vary the 

charge density in order to examine how the pressure changes. 

The effect of charge on pressure is shown in the Table 1. 

Table 1. This table shows the effect of charged density on pressure for 

generalized TOV equation in special case �� 
 nopJLqpL	. 
Charge density (C/m3) Pressure (N/m2) 

1 4.08r1028 

2r1011 7.25r1029 

3r1011 1.08r1030 

4r1011 2.00r1030 

5r1011 1.84r1030 

From the table, we can see that when the charge density 

increases, the pressure also increases. The charge causes the 

pressure to increase. Anisotropic fluid sphere has a pressure 

greater than that of perfect fluid sphere for equal mass, 

density, and electric field. For example, we compare the case 

of d-� 
 10�� kg/m4  with the case of d-� 
 5 r10��kg/m4 as shown in Figures 2 and 3, respectively. 

 

Figure 2. The fluid pressure for d-� 
 10�� kg/m3  
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Figure 3. The fluid pressure for d-� 
 5 r 10�� kg/m3. 
From these graphs, we can see that when the charge is 

denser, the fluid pressure increases. In this case, when the 

charge density increases by 5 times, the pressure can increase 

by a 100 times. Moreover, the effect of fluid density on 

pressure is also investigated, as shown in Table 2. 

Table 2. This table shows the effect of fluid density on pressure for 

generalized TOV equation in special case �� 
 nopJLqpL	. 
Density (kg/m3) Pressure (N/m2) 

1r1012 4.08r1028 

1.1r1012 6.28r1028 

1.2r1012 1.04r1029 

1.3r1012 2.07r1029 

1.4r1012 9.47r1029 

Similarly, when the fluid density increases, the pressure 

also increases. This means that the denser charged stars have 

a pressure greater than the less compact stars. 

 

Figure 4. The fluid pressure for �X 
 10�� kg/m3. 

 

Figure 5. The fluid pressure for �X 
 1.2 r 10�� kg/m3. 
Figures 4 and 5 show the effect of fluid density on pressure. 

We can see that when the fluid density increases by 1.2 times, 

the pressure can increase by approximately 100 times. 

Moreover, when the radius decreases, the pressure increases. 

That is the center of star has the highest pressure. 

4. The Transmission and Reflection 

Probabilities for Tolman-Bayin Type of 

Anisotropic Fluid Sphere 

4.1. The Transmission Probability 

Referring to P. Boonserm, and M Visser [23], we use a 

similar concept to find the transmission and reflection 

probabilities for the Tolman-Bayin type of charged fluid 

sphere.  

The wave that can be observed by an observer away from a 

black hole is the only transmitted wave. The incident wave is a 

blackbody radiation because a black hole is a blackbody. 

However, the transmitted wave is no longer a blackbody 

radiation due to the modification from the curvature of 

spacetime. We call the transmitted wave as a greybody 

radiation. The transmission probability is called the greybody 

factor for black hole systems. The greybody factor is a 

quantity containing information about the percentage of 

Hawking radiation that can reach infinity. In addition, we can 

derive the greybody factor by solving the Schrodinger-like 

equation. However, we cannot, in general, find the exact 

solutions [23-25]. 

For the static, spherically symmetric background, the 

metric takes the form [10, 26] 

%J� 
 K!��	�%L� � ���
M'��	 � ��%N�.        (14) 

Substituting in the Einstein’s field equation and performing 

some manipulation, we obtain [26] 

�x�� 
 ?+M'�� ��� y �+M'z � 2{'��
�� @ " +P! ��� y �+M'z | � |�� " �}�

M'�~ , (15) 
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where 

| 
 �'���	��'��	.                  (16) 

Matching this interior solution with the exterior 

Reissner-Nordstrom at r = a, we assume the total charge to be 

��q	 
 �q� ,                (17) 

where K is constant. Moreover, we can find total 

gravitational mass 

# 
 �B�����	��}�
���������	B .             (18) 

For simplicity, we are interested in the case n = 0. So we 

obtain 

K!� 
 1 � ��B " }�
B� .             (19) 

P! 
 1 � ��B " }�
B� 
 1 � �}�

B� .        (20) 

In the presence of a scalar field, it is possible for 

anisotropic fluid sphere to radiate scalar waves. Therefore, 

we can find the transmission probability of the scalar waves 

in propagating to a distant place, or spatial infinity. In [24, 

27], the rigorous bound on the transmission probability was 

calculated for the Myers-Perry black hole. In this paper, we 

study the Tolman-Bayin type of charged fluid sphere, which 

takes the form [26] 

%J� 
 Y1 � ��B " }�
B�Z� %L� � Y1 " }�

B�Z�� %�� � ��%N�. (21) 

The rigorous bound on the transmission probability is 

given by [24-25] 

A � J5n�� � ��� $ [���	%�;��� �.            (22) 

For the Tolman-Bayin type of charged fluid sphere, the 

potential takes the form 

[��	 
 �����	�� Y1 � ��B " }�
B�Z�

          (23) 

and the tortoise coordinate is given by 

��;�� 
 �
y����� �����zy������� z .             (24) 

Therefore, the rigorous bounds on the transmission 

probability is 

A � J5n�� � 12� = ��� " 1	�� ?1 � 2#q " ��q�@� %�;
�

��
� 


 J5n�� � 12� = ��� " 1	��
1 � ��B " }�

B�1 � �}�
B�

%��
�'

� 


 J5n�� � 12� = ��� " 1	�� q� � 2#q " ��q� � 2�� %��
�'

� 


 J5n�� � 12� ��� " 1	 q� � 2#q " ��q� � 2�� y� 1�z�'
�� 


 J5n�� � ��� ��� " 1	 B����B�}�
B���}� Y ��'Z�.      (25) 

The rigorous bound on the transmission probability is 

plotted with � as shown in Figure 6. 

 

Figure 6. The rigorous bound on the transmission probability as a function 

of �.  

From the graph, we can see that the rigorous bound on the 

transmission probability increases as the wave’s energy 

increases. This means that the waves with higher energy can 

penetrate to spatial infinity with a higher probability than 

lower energy waves. 

4.2. The Reflection Probability 

From the law of conservation, the relationship between the 

reflection probability and the transmission probability 

satisfies [25] 

� " A 
 1.                  (26) 

Therefore, for the given transmission probability, the 

reflection probability can be obtained 

� 
 1 � A 
 1 � J5n�� � ��� ��� " 1	 B����B�}�
B���}� Y ��'Z�. (27) 

The rigorous bound on the reflection probability is plotted 

with ω as shown in Figure 7. 
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Figure 7. The rigorous bound on the reflection probability as a function of ω. 

From Figure 7, we can see that the rigorous bound on 

reflection probability decreases with increasing wave energy. 

This relationship is an inverse of the relationship associated 

with the transmission probability. That is, the increase in the 

rigorous bound on reflection probability corresponds to the 

decrease in the rigorous bound on transmission probability, 

satisfying the law of conservation within the equation (26). 

5. Conclusion 

In this paper, we derived the generalized TOV equation for 

anisotropic fluid sphere. We investigated the effect of charge 

on pressure in the absence of a scalar field, and with a 

constant charge density. The result shows that the presence of 

charge can add to the pressure of charged stars. Moreover, a 

denser star has more pressure than the less compact stars. 

Finally, we calculated the rigorous bound on the transmission 

probability and the reflection probability for the 

Tolman-Bayin type of charged fluid sphere. We found that 

high energy waves have a higher probability in reaching 

spatial infinity than low energy waves. 

For future work, spherical objects in reality can be more 

easily observed in terms of pressure and density. Therefore, 

building a solution generating theorem in terms of pressure 

and density allows us to gain a clear understanding of star-like 

object. In this work, the solution generating theorem algorithm 

is applied to the generalized TOV equation. We can find new 

solutions from the theorems. Moreover, the type of solutions 

can also be classified by the theorems. We can also see the 

interrelationship between the anisotropic solutions. 
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