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Abstract: The motion of the object in the medium has always been a hot research topic, and it is closely connected with 

many applications in our life. The acceleration of the object with multiple forces becomes very complicated, especially when 

these forces depend on the motion of the object. The exact formula for the object motion is a differential-integral equation and 

is very difficult to be solved analytically. One example of this kind of motions is the rocket launch. With sufficient thrust, the 

rocket can obtain an acceleration large enough to escape from the gravity of the earth. With the increasing height, the gravity 

from the earth becomes smaller, which affects the net acceleration of the rocket. Meanwhile, the air resistance becomes more 

and more important when the velocity of the rocket increases. It even plays the main role in the middle stage of the launch. 

Also, as the air resistance depends on both the velocity of the rocket and the air density (there is no air resistance in vacuum), 

the air resistance will decrease when the air density becomes small enough at the large height. In this article, a model that 

includes all of the factors mentioned above is established, and how these forces change the velocity of the rocket is analyzed. 

Two scenarios, one with air resistance and one without, are described. The velocity of the rocket in each scenario is represented 

by graphs, which are compared. With justification, the Taylor series is used to solve the differential-integral equation, and it is 

found that the fuel thrust and the gravity become important in the rocket launch at the beginning stage.  In the middle stage, the 

air resistance begins to have a significant effect and reduces the acceleration of the rocket. In the final stage, there is virtually 

no gravity or air resistance, and only the fuel thrust contributes to the acceleration of the rocket.  
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1. Introduction 

The acceleration process is very common in nature. It 

ranges from the acceleration of racing cars and the flow of 

water on mountains, to the launch of rockets. This process 

relates to both the state of the motion and the force acting on 

the object. When the forces on the object change with the 

status of the object (such as the air resistance), the question 

becomes especially complicated. Furthermore, when the 

mass of the object changes with time, the acceleration will 

also be different even with the same force (such as a missile 

launch). In the article, the rocket launch which relates to all 

of these factors is investigated. These phenomena are easily 

observed, but it is hard to completely describe these kinds of 

acceleration processes by utilizing physical models or 

mathematical equations. This article focuses on a specific 

model, the launch of a rocket, and intends to set up a more 

realistic model. More specifically, this paper introduces many 

factors, including gravitational acceleration, air resistance, as 

well as the motion of a variable mass object to solve the 

problem of the acceleration of a rocket [1-3]. 

The general study of the forces on a rocket belongs to the 

field of ballistics. Spacecrafts are further studied in the 

subfield of astrodynamics. Flying rockets are primarily 

affected by the following: thrust from the engines; gravity 

from celestial bodies; drag if moving in the atmosphere [4-6]. 

Rockets that must travel through the air are usually tall and 

thin as this shape gives a high ballistic coefficient and 

minimizes drag losses. In addition, the inertia and centrifugal 

pseudo-force can be significant due to the path of the rocket 

around the center of a celestial body; when high enough 

speeds in the right direction and altitude are achieved, a 

stable orbit or escape velocity is obtained. 

The first factor introduced is gravitational acceleration. In 
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physics, gravitational acceleration is the acceleration of an 

object caused by the force of gravity. Neglecting friction 

such as air resistance, all small bodies accelerate in a 

gravitational field at the same rate relative to the center of 

mass.[7-9] This is true regardless of the masses or 

compositions of the bodies. At different points on Earth, 

objects fall with an acceleration between 9.764 m/s
2
 and 

9.834 m/s
2
 depending on altitude and latitude, with a 

conventional standard value of 9.80 m/s
2
 (approximately 

32.174 ft/s
2
) [10]. This does not take into account other 

effects, such as buoyancy and drag. 

In the following parts of this article, the change of 

acceleration during the accelerating process of a rocket is 

taken into consideration, which makes it a more realistic 

model. 

In the meantime, the rocket is subjected to drag. Drag is a 

force opposite to the direction of the rocket's motion. This 

decreases acceleration of the vehicle and produces structural 

loads. Deceleration force for fast-moving rockets is 

calculated using the drag equation. Drag can be minimized 

by an aerodynamic nose cone, by using a shape with a high 

ballistic coefficient (the "classic" rocket shape—long and 

thin), and by keeping the rocket's angle of attack as low as 

possible. During a rocket launch, as the vehicle speed 

increases, and the atmosphere thins, there is a point of 

maximum aerodynamic drag called Max Q. This determines 

the minimum aerodynamic strength of the vehicle, as the 

rocket must avoid buckling under these forces.[10] 

Finally, the motion of a variable-mass object is introduced. 

A variable mass is an object whose mass changes significantly 

during the movement. This motion is called the motion of a 

variable-mass system. The change in mass of the object 

referred to here does not mean the elimination or production of 

mass but that a part of the mass of the object is not considered 

before or after a certain instant. The former is equivalent to the 

mass of the object incorporated by mass, and the latter is 

equivalent to mass separation and the mass of the object is 

reduced. If the rotational speed and acceleration of the variable 

mass are negligible compared to the translational velocity and 

acceleration, the variable mass can be regarded as a variable 

mass point. The problem of variable mass in this case is still in 

the category of classical mechanics. 

There are many examples of variable mass in engineering 

and nature. The rocket burns out the fuel during the process 

of accelerating, which changes the mass of the rocket. In 

general, the jet is a variable-mass object, because it not only 

draws in air continuously to increase the mass but also ejects 

gas to reduce the mass, that is, the incorporation and 

separation of mass occur simultaneously. The mass of the 

meteoroid is reduced by frictional combustion when it enters 

the atmosphere. The mass of the ice floes increases due to the 

freezing of seawater or decreases due to melting; The mass 

and moment of inertia of the spindles of the cotton mill are 

constantly changing during the rotation, and so on. 

Modern rockets use the method of gradually ejecting the 

burned gas outward to increase the speed of the rocket itself. 

Therefore, this model obviously belongs to the problem of a 

variable-mass system. 

The following parts of the essay simulate the motion of a 

rocket by adopting Newton’s second law. During the 

calculation, mathematical skills like numerically solving 

differential equations and Taylor series are used. Many 

factors mentioned above are considered, and the results are 

analyzed. 

2. Theoretical Model 

In this model, 40000m is chosen as the final height of the 

orbit that rockets enter. 

Three factors that introduce complications to the problem 

are taken into consideration in the analysis [11].  

The first factor is gravitational acceleration(g). The value 

of g decreases as the rocket gradually gains height, so the 

function g(h) is used to account for this change. For the sake 

of simplicity, the value of g is supposed to be inversely 

proportional with the height of the rocket. The value of 

gravitational acceleration at any moment during the 

launching process is decided by the following equation, 

where g0 is the gravitational acceleration on the ground and 

has a value of 10m/s
2
.  

�(ℎ) = �� − ��(1 − ℎ
ℎ	) 

In the meantime, the change in air density is not negligible. 

The rocket is subjected to air resistance, which is related to 

air density, a value that decreases linearly as the rocket gains 

height and infinitesimally approaches zero at Hf, the final 

height of the rocket. The following equation decides f (air 

resistance force). Air resistance 
 = ��
 × ����
�������  [12-13], 

where C is a constant that has a value of 10. Therefore, the 

air resistance can be expressed in the following form. 


 = ��
 × (1 − ℎ
�	) 

Finally, the rocket loses mass as fuel is expelled. A typical 

value of 
��
�� = 50��/  is chosen in this essay. The following 

equation decides the thrust (F) of the rocket. A is a constant 

with a value of 5500, and the initial mass is assumed to be 

15000 kg. 

! = " #$
#%  

The analysis of three factors such as upward thrust from the 

fuel, gravity, and air resistance is broken down into two parts. 

In order to check the effects of each factor on the 

acceleration of the rocket, scientists consider each factor 

separately. In the first scenario, the effect of air resistance is 

excluded, and the net force of the rocket is thus comprised of 

two forces: the upward thrust force and the downward 

gravitational force. The net force thus could be expressed in 

the form below. F decides the thrust provided by the fuel of 

the rocket [14-17]. 
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#% = ! −$�(ℎ) 

$#�
#% = ! − $&1 � �

�	'�� 

m#�
#% � ! �$�1 � 1

�	) �#%�
�

��� 

In order to calculate the result, the equation above is 

rewritten in a discrete form which can be solved numerically. 

This expression could then be calculated in Excel or C++ 

codes. 

$*
�*+, � �*∆% � #$

#% " � $*�1 � 1
�	.�*∆%���

*

�
 

To account for the effect of air resistance, just subtract 

from the net force above a term that expresses air resistance. 

Written in a discrete form, the equation in the second 

scenario that includes the effect of air resistance is shown 

below.  

$*
�*+, � �*∆% � #$

#% " � $*�1 � 1
�	.�*∆%���

*

�
� ��*
�1 � 1

�	.�*∆%�
*

�
 

In the expression above n indicates the steps. The length of 

a time step is 1s. When calculating the distance traveled by 

the rocket, it is assumed that in each time interval the amount 

of lost mass is negligible and that the acceleration is 

negligible. This is acceptable if the time interval is small 

enough, and there’s thus no quadratic term that accounts for 

the acceleration. The following calculations are conducted to 

demonstrate this. The scenario without air resistance is used. 

 

Figure 1. The distance rocket travel as a function of the time. Time interval 

in the numerical discrete form is taken as 10 seconds. 

The two graphs (Figure 1 and 2) above illustrate this 

concept. When the time interval equals 1s, the difference 

between the two results is negligible, and the sum in the 

discrete is closer to the continuous integral. while the graph 

with the time step to be 10 seconds, exhibits great 

disagreements between two results. Because the 

approximation of the “constant velocity” for the rocket in 

each time step is not a good approximation anymore. In other 

words, the rocket velocity at the beginning of one step is 

different from the velocity after the 10 seconds with non-

negligible magnitude. 

 

Figure 2. The distance rocket travel as a function of the time. Time interval 

in the numerical discrete form is taken as 1 seconds. 

The analysis here adopts the method of Taylor Series, a 

representation of the value of an infinitely differentiable 

function as a sum of infinite terms calculated form the values 

of the function’s derivatives. Taylor series takes the 

following form. 


�/,� � .
�*��/��0! �/, � /��*
2

*3�
 

If the value of the function at xa is known, the value at xa+1 

can be approximated. The more terms added, the more Taylor 

series resembles the original function. If, ideally, an infinite 

number of terms is added, the Taylor series perfectly 

reproduces the original function. In this model, when 

calculating the distance traveled by the rocket, the Taylor 

series takes a familiar form.  

#�%,� � .#�*��%��0! �%, � %��*
2

*3�
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d(%,) = #(%�) 5 #6(%�)(%, − %�) 5 #66(%�)2! (%, − %�) 5 ⋯ 

The zeroth derivative of distance is just distance itself, the 

first derivative is the velocity, and the second derivative is 

the acceleration. Thus, the Taylor series can be expressed in a 

familiar form, and this is the expression used in the 

production of the data, 

d(%,) = #(%�) 5 ��(%, − %�) 5 1
2 9��%, � %��
 5⋯ 

The time step refers to %, � %�. When the time interval is 

greater than one, the quadratic term magnifies the effect of 

acceleration. On the other hand, as the time interval 

decreases, the effect of acceleration becomes less significant. 

When a positive number smaller than 1 is raised to the 

second power, it becomes smaller and therefore can be 

neglected within some precision. 

3. Numerical Results and Analysis 

In the real analysis of velocity, for the sake of precision, a 

time step of 1s is used in the model, and the method of 

quadratic term correction term is not adopted. 

In the first scenario, the effect of air resistance is 

neglected.  

Figure 3 is a smooth curve. The thrust is constant 

throughout the launching process, but the gravitational force 

decreases as the rocket gains height. This explains why the 

curve as an increasing slope. At the later time period, the 

height becomes larger, and the gravity constant becomes 

smaller. The net acceleration constant of the rocket will 

become larger, which is indicated by the slope of the velocity 

in Figure 3. 

 

Figure 3. The velocity of the rocket as a function of time. The air resistance is neglected in this figure. 

The final velocity of the rocket is determined by the fuel 

thrust (which is the main effect) and also the height 

dependence of the gravity constant which is determined by 

the formula below  

F � ;$,$
<
  

Here F is the gravity between two objects. And the 

distance r is related to the height in our rocket model.  

When the effect of air resistance is taken into 

consideration, however, the graph becomes more complex, 

see the Figure 4. 
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Figure 4. The velocity of the rocket as a function of time. The air resistance 

is neglected in this figure. 

Despite the effect of air resistance, the rocket accelerates 

rapidly in the initial stage of launching, due to the small 

velocity of the rocket. With the time increasing, the height 

increases which brings smaller gravity on the rocket and 

contribute to the larger acceleration of the rocket. However, 

the velocity of the rocket increases fast and brings large air 

resistance. This reduces the acceleration of the rocket. And 

the slope in Figure 4 steadily decreases. As its velocity 

reaches a particular value, air resistance starts to have a 

telling effect on the Rocket. At T=24s the acceleration 

already decreases to 0.86m/s
2
, a value smaller than one. Due 

to the high velocity, air resistance acts against the rocket 

throughout the whole launching process, causing the 

acceleration to decrease dramatically and finally to negative 

values, because the fuel will have been exhausted. 

4. Summary 

In summary, this paper proposes a theoretical model with 

differential-integral equation to simulate the rocket launch in 

the air by including the fuel thrust, gravity, and the air 

resistance. As the gravity depends on the height and the air 

resistance depends on both the height and the velocity of the 

rocket, it becomes much more complicated to solve the 

equation for the rocket motion analytically. Therefore, the 

formula is written in a discrete form and solved numerically. 

The acceleration of the rocket increases with time at the early 

stage of the rocket launch due to the smaller gravity with the 

increasing height. At the larger stage, the velocity of the 

rocket becomes larger, which brings large air resistance to the 

rocket and reduce the acceleration. In the final stage, there is 

no air force because the air density becomes zero, and the 

gravity is also negligible. The rocket is pushed only by the 

fuel thrust with constant acceleration. A realistic simulation 

for the rocket motion is obtained, and the importance of each 

factor on the rocket is analyzed. In future studies, it is 

suggested that the detailed effects of the earth rotation and 

the wind effects in the air should be incorporated as a part of 

the model.  

Acknowledgements 

Author thanks Prof. Chen for the helpful discussions 

during the entire project.  

 

References 

[1] Hawren Fang Yousef Saad, Numereical linar algebra with 
applications, Volume16, Issue3, March 2009, Pages 197-221. 

[2] Le Cun, Yann. Deep learning [J]. NATURE, 2015, 521 (7553): 
436-444. 

[3] Tariyal, Snigdha. Deep Dictionary Learning [J]. IEEE 
ACCESS, 2016, 4: 10096-10109. 

[4] Gerald James Holton and Stephen G. Brush (2001). Physics, 
the human adventure: from Copernicus to Einstein and 
beyond (3rd ed.). 

[5] Mnih, Volodymyr. Human-level control through deep 
reinforcement learning [J]. NATURE, 2015, 518(7540): 529-553. 

[6] Li, He. Learning IoT in Edge: Deep Learning for the Internet 
of Things with Edge Computing [J]. IEEE NETWORK, 2018, 
32: 96-101 

[7] Hirt, C.; Claessens, S.; Fecher, T.; Kuhn, M.; Pail, R.; Rexer, 
M. (2013). "New ultrahigh-resolution picture of Earth's 
gravity field". Geophysical Research Letters. 40 (16): 4279–
4283. 

[8] Yao, Shuochao. Deep Learning for the Internet of Things [J]. 
COMPUTER, 2018, 51(5): 32-41. 

[9] Qiao, Junfei. An adaptive deep Q-learning strategy for 
handwritten digit recognition [J]. NEURAL NETWORKS, 
2018, 107: 61-71. 

[10] "NASA- Four forces on a model rocket". Grc. nasa. gov. 2000-
09-19. Archived from the original on 2012-11-29. Retrieved 
2012-12-10. 

[11] Damien Scieur, Alexandre D’Aspremont, Francis Bach. 
Nonlinear Acceleration of Stochastic Algorithms. 2017. 

[12] L. G. C. E. Pugh, J Physiol. 1971 Mar; 213(2): 255–276. 

[13] Robin Smith, Graham Peacock, Journal of Evaluation & 
Research in Education Volume 6, 1992 - Issue 2-3: Primary 
Science. 

[14] Ken Takahashi and D. Thompson, American Journal of 
Physics 67, 709 (1999); 

[15] Tomer Urca, Gal Ribak, Journal of Experimental Biology 
2018: jeb.177600 doi: 10.1242/jeb.177600. 

[16] Allen T. Chwang and K. H. Wang, J. Fluids Eng 106(2), 233-
240 (Jun 01, 1984). 

[17] Dapeng Zhu, Shock and Vibration Volume 2018, Article ID 
7513971, 8 pages. 


