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Abstract: Nowadays most of the practical calculations and theoretical findings in convective heat transfer amount to 

determining heat transfer coefficient (a coefficient of proportionality between surface density of the heat flux and temperature 

difference between the wall and the heated medium). An expression that includes heat transfer coefficient is called Newton’s law 

of cooling. The purpose of this study is to show that Newton’s law of cooling is not consistent with the first law of 

thermodynamics, and the study proves it using a new, vector form of the first law of thermodynamics, along with the more 

traditional scalar form. The study also offers a new analytically obtained expression for calculating surface density of the heat 

flux, and shows that it is not consistent with the Newton’s law of cooling. It also shows that Fourier’s thermal conduction law is 

a consequence of the first law of thermodynamics in vector form, and that Fourier-Richmann’s law of cooling and Newton’s law 

of cooling do not agree with the first law of thermodynamics. The results of this study can be used in engineering calculations for 

heat-using devices, as well as in a theoretical research. Additionally, the study suggests a new possible way to derive a nonlinear 

energy equation – by using vector form of the first law of thermodynamics. If previously obtained nonlinear Navier-Stokes 

equation is added to this nonlinear energy equation, a system of nonlinear equations could be obtained to correctly describe 

theory and practice of convective heat exchange, introducing completely new methods for calculating convective heat exchange 

(without using traditional heat transfer coefficients and laws of cooling). 

Keywords: First Law of Thermodynamics, Heat Transfer Coefficient, Newton’s Law of Cooling, Surface Heat Flux Density 

 

1. Introduction 

Traditionally, researchers describe the phenomenon of 

convective heat transfer using a system of differential 

equations (Navier-Stokes equation, continuity equation, 

energy equation), and also an expression describing 

proportionality of the heat flux surface density to the 

wall-liquid temperature difference (Newton’s law of cooling). 

A coefficient of proportionality in the Newton’s law of cooling 

is called “heat transfer coefficient” (convective heat exchange 

coefficient). Scientists and engineers spend a lot of their time 

and effort calculating this variable, although not much can be 

found in scientific and technical literature to substantiate 

validity of Newton’s law of cooling. Nobody is mentioning 

any law of physics from where Newton’s law of cooling 

followed, and often heat transfer coefficient is even called “an 

ancillary variable”. 

It would make much more sense that a description of 

thermal phenomena (including convective heat transfer) 

should be based on the laws of thermodynamics, meaning that 

mathematical expression of the Newton’s law of cooling and 

the energy equation both must follow from the laws of 

thermodynamics. That is why this paper is trying to use the 

first law of thermodynamics to obtain an expression for the 

heat flux surface density instead of the Newton’s law of 

cooling. 

2. On Vector and Scalar Forms of the 

First Law of Thermodynamics 

Quantitative description of processes shows that some 

quantities can be conserved under certain conditions, and 

there are more than one and a half dozen conserved quantities 

in physics. Conserved quantities and conditions under which 

they exist are described by conservation laws. In mechanics 
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there are laws of conservation of momentum, angular 

momentum, and mechanical energy, where each of these 

variables measures the quantity of mechanical motion. The 

laws of conservation also help to solve various problems in 

physics. If conservation laws apply, from the initial state of a 

physical system we can find its final state without the 

describing the whole process in detail. Conservation laws can 

be also written out for thermal motion, but in this case it would 

be necessary to calculate the quantity of thermal motion. 

In classical physics each type of motion can have a scalar or 

a vector measure of motion. A system’s quantity of motion can 

be determined by studying the system’s influence on another 

system during their interactions. For example, if a moving ball 

runs into a stationary ball, then, as a result of interaction, the 

second ball moves. Quantity of motion of each system can be 

determined by change in velocity and change in moving 

direction of each of the balls. 

Starting with Descartes in the 17
th

 century, scientists tried to 

describe quantity of mechanical motion quantitatively. Some 

suggested using as a measure momentum (product of mass 

and velocity), others suggested using kinetic energy. And only 

in the second half of the 20
th

 century Sorokin [1] proposed a 

theory that stated that in classical physics there are two 

quantities of mechanical motion, correlating to space and time: 

vector (momentum), and scalar (kinetic energy). Nowadays 

not only Newton's second law of motion [2] can be written out 

for each of these two quantities, but laws of conservation of 

vector and scalar quantities of motion can be written out too. 

For some reasons quantity of motion usually is not used 

when describing heat phenomena, perhaps due to the nature of 

the heat systems. However, the more quantities of motion exist, 

the more conservation laws would exist, and, consequently, 

the greater number of computational equations would be 

needed for calculations – that’s why thermal phenomena are 

so difficult to quantify. For this reason, in contrast to the 

deterministic description of Newton's classical mechanics, 

when studying thermal phenomena it would make sense to 

introduce microparameters and their averaged values in the 

form of macroparameters, because thermodynamic systems 

are indeterministic (probabilistic). Classification of systems 

into open systems (capable of exchanging mass and energy 

with the environment), closed systems (capable of exchanging 

only energy with the environment), and closed-loop systems 

adds additional complexity to the formulation of conservation 

laws. Thus, the usual formula of the first law of 

thermodynamics for closed systems (the energy supplied to 

the system in the form of heat �� is spent on the change in 

the internal energy of the system ��, and doing the work 

���) needs to be adjusted if the thermodynamic system is 

open. In this case, it is necessary to take into account the 

change in energy of the system as a result of the entering or 

leaving system’s N particles with the energy γ of one particle. 

Then the first law of thermodynamics can be written out in the 

form of (1): 

�� = �� − 	��� + 	
��            (1) 

Equation (1) is written in scalar form. If to assume as a 

scalar measure for the thermal motion the energy of the 

particles making up the system (internal energy	�), then the 

expression (1) can be described as following: the internal 

energy of the system �� is spent on energy transfer through 

heat exchange, making work, and energy changing due to 

particles entering or leaving the system. 

A thermodynamic system can also be located in the action 

field of different forces (gravity, electromagnetic, or surface 

forces). Then on the right side of equation (1) it is necessary to 

take into account a change in internal energy due to the 

interaction with the external forces and fields. Subsequently, 

in each specific case, the law of the internal energy change 

would look different. 

The first law of thermodynamics then becomes an equation 

(or the law) describing a change in a scalar measure of thermal 

motion (or its internal energy), just as like an assumption in 

mechanics that a change in kinetic energy is equal to the work 

of forces (the second Newton’s law in scalar form). In 

mechanics, both scalar and vector measures of motion depend 

on velocity. To move from one measure of motion to another, 

we need to divide kinetic energy by velocity. 

In thermal interactions the amount of heat energy 

transferred or received depends on the surface area where heat 

is transferred. The area can be vectorized to give it direction. If 

we divide the energy transferred in the form of heat in one 

second by the surface area, we will get a vector variable: 

surface density of the heat flux 
. 

To quantitatively determine vector measure of thermal 

motion 
, let’s ask a question: what would 
	depend on? If to 

assume that surface density of the heat flux would depend on 

the temperature gradient ∇T, physical properties of the 

medium λ, characteristic size of the system L, and velocity v 

(in case of convective media). So, 
 = 
�∇�, �, �, �).	Then 

the increment of the function 
	can be written out in the form 

of expression (2): 

�
 = 	
��

�∇�
d∇T +	

��

��
�� +	

��

��
�� +

��

��
��	      (2) 

For a system with dimensions and physical properties being 

unchanged in the process of heat transfer, expression (2) can 

be simplified, and it would turn into (3): 

�
 = 	
��

�∇�
d∇T +	

��

��
��	             (3) 

Expression (3) is indeed the first law of thermodynamics in 

vector form. For systems where velocity is absent or constant, 

the second term on the right becomes equal to zero. To solve 

the differential equation (3) in the approximation in 

question	�� = 0,	it is necessary to know the expression for the 

partial derivative with respect to the temperature gradient. 

If one to assume that 

��

�∇�
= 	� = !"#$%, 

then the first law of thermodynamics in vector form takes the 

form of (4): 

�
 = �	�&�	                  (4) 
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To emphasize that this is a vector form of the first law of 

thermodynamics, equation (4) can be written out in vector 

notation: 

�
' = −	�	d∇�(((((' 

The solution of the equation (4) under the condition 
 = 	0 

and when 	&� = 0  leads to the Fourier‘s law of heat 

conduction (5): 


 = �∇�                    (5) 

From the formal (mathematical) point of view, expression 

(5) can be seen as an expansion of the unknown function 
 in 

the Maclaurin series. When expanding, a linear approximation 

of the function was used: the function was replaced by a 

tangent to it with a close to zero value of the argument 

(temperature gradient). In other words, the solution of the 

equation (4) in the form of (5) is valid for even extremely 

small temperature gradient. For example, when liquids are 

heated, temperature gradient is zero in channels on the channel 

axis, but as it approaches the walls, temperature gradient 

increases sharply. However, although Fourier’s law is valid 

near the channel’s axis, it doesn’t work near the channel’s 

walls. 

To write out the expression for the heat flux density that 

would be valid over the entire cross-sectional area of the 

channel, it is possible, for example, to increase the number of 

expansion terms in the Maclaurin series. Another way would 

be to take into account the parameters that affect the surface 

density of the heat flux. By definition, surface density of the 

heat flux 
 (heat energy transmitted per unit of time and sent 

to the heat exchange surface) includes a change in the internal 

energy. The change in the internal energy grows along with the 

increasing temperature. According to Fourier's law, surface 

density of the heat flux is proportional to the temperature 

gradient. So, it looks like the surface density of the heat flux 

depends on the temperature of the body and on the 

temperature gradient: 
��, ∇�).	However, it would be not be 

correct to say that the increment of this function is equal to the 

sum 

�
 = 	
�


��
�� +	

�


�∇�
�∇� 

In classical physics and mathematics a function is usually 

expressed in terms of independent arguments. But in our case, 

temperature and temperature gradient are not independent 

arguments. If temperature field is known, then temperature 

gradient can be determined by differentiation. If a temperature 

gradient is given, then we can find temperature distribution in 

space by integration. Thus, the expression for the heat flux 

surface density must include either temperature or 

temperature gradient. 

To satisfy the temperature requirement, let’s assume that the 

partial derivative of the heat flux density over the temperature 

gradient is not a constant (as is usually believed in the linear 

theory of convective heat transfer), but is a power function (6), 

in which B and n are some constants: 

��

�∇�
= )∇�*                  (6) 

It seems that n can take on the same values (from – 1 to 0), 

as in [3]. In this case, the first law of thermodynamics in 

vector form can be written out as the expression (7): 

�
 = 	)∇�*d∇T	                (7) 

Let’s solve equation (7) under the same conditions as before, 

and we’ll find out that 
 is not a linear function of (8): 


 = 	
+

*,-	
&�*,-                 (8)	

Expression (8) is consistent with Fourier’s law – when 

medium’s velocity equals zero and 	# = 0 , expression (8) 

becomes indistinguishable from Fourier’s law of heat 

conduction. 

Consequently, to solve heat exchange problems, it is 

possible to either use the first law of thermodynamics (1) 

written in scalar form, the expression (8) that follows from its 

vector form (4, 7), or a combination of both. 

3. The Laws of Cooling and the First Law 

of Thermodynamics 

At present time, the expression (9) (called “Newton’s law of 

cooling” in English-language literature or 

“Newton-Richmann’s law” in Russian-language literature) is 

the one most often used in solving convective heat transfer 

problems: 


 = 	.��/ − �)	                (9) 

Here 
 is surface density of the heat flux, . - heat transfer 

(heat exchange) coefficient, �/	 is wall temperature, �  is 

liquid temperature. 

Different researchers define liquid temperature �  in 

different ways. Heat transfer textbooks [4-6] call it "a 

temperature of a liquid or gaseous medium surrounding a 

body." Other scientific literature clarifies that it can be a 

temperature of the liquid located far from the channel wall, or 

a constant liquid temperature along the channel cross section 

[7], or an average liquid temperature along the channel cross 

section [8]. Some even argue that each problem should specify 

what is meant by �: an average temperature over the channel 

cross-section, or an average mass temperature of the liquid, or 

even a constant temperature of the liquid across the channel 

section at the inlet to the heated section of the channel. They 

believe that the choice would depend on the nature of the 

problem and calculating convenience [8]. 

Even the expression (9) is called “Newton’s law of cooling,” 

Newton actually did not suggest dependencies similar to (9). 

But in experiments on cooling a body [9-11] he could not help 

but notice that the higher would be the temperature of the 

cooling body, the more energy per unit of time would be 

transferred into the environment. To make the experiments 

more clear-cut, he always cooled the body in the same way – 

by using constant-speed air flow. It seems that he was 

interested in the relationship between the amount of heat 
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released into the environment and the temperature of the 

cooling body. The simplest assumption here would be a linear 

dependence. It seems to us that exactly this statement about 

the proportionality between the amount of heat transmitted by 

the heated body and its temperature (“the total heat of iron”) 

[11] is the main point of the "true" Newton’s cooling “law” (or 

hypothesis). 

If � is denoted as the energy lost by the heated body upon 

cooling, and t is denoted as time, then the Newton’s law of 

cooling can be written in the form (10), 

01

02
= 3�/	                (10) 

where	3 is the coefficient of proportionality, �/ is the body 

temperature (can also be body surface temperature). 

If to keep in mind that in Newton’s experiments the mass of 

the heat-releasing body (iron bar) basically did not change, 

and the specific thermal capacity 4	at a constant volume is a 

constant in this case, then instead of (9) (11) can be written out 

as 

�� = 54��/               (11) 

If one to compare expression (9) with expressions (10) and 

(11), it would be quite obvious that they are not the same. If 

we call expression (10) the "true" Newton’s law of cooling, 

then the expression (9) can be called "fictitious" Newton’s law 

of cooling. 

In thermodynamics expression (11) presents a method of 

calculating internal energy of a physical system. In this case 

the temperature is measured using Kelvin’s units on the 

absolute thermodynamic temperature scale. So, it looks like 

that the "true" Newton’s law of cooling (10) establishes a 

fundamental thermodynamics connection between the 

quantity of thermal motion of the system’s particles (system’s 

internal energy) and temperature, and not just any temperature 

– the absolute temperature. In those times Newton’s 

contemporaries used different temperature scales that were 

often not compatible, which, perhaps, prompted Newton to 

search for a convenient, “universal” temperature scale. 

Unfortunately, the researchers never noticed this Newton’s 

innovation, and only in the 21
st
 century Kartashov [12] 

pointed out to Newton introducing absolute temperature in his 

studies back in his day. 

Richmann [13] also studied the processes of cooling and 

heating. The results of his experiments [13] on the cooling of 

small glass spheres filled with hot water can be represented in 

modern interpretation in the form of the dependence (12): 


 = 	6��/ −	�7)              (12) 

Here 6 is the empirical coefficient, �7	is the ambient air 

temperature (room temperature where the experiments took 

place). 

Fourier [14] was interested in studying the same processes, 

too, and also suggested several laws including cooling and 

heating phenomena. In his famous "Analytical Theory of 

Heat" [14] in order to describe the intensity of heat transfer he 

used a notion of a heat flux density 
 as the amount of heat 

transmitted per unit of time through the surface. He also 

proposed two ways of determining 
: first, if a homogeneous 

solid body is placed between two limitless surfaces that have 

different, but not changing with time temperatures, then the 

dependence (5) (Fourier’s thermal conduction law) should be 

used to calculate heat flux density. Second, in a case of heat 

transfer from a moving liquid, Fourier proposed another way 

of calculating heat flux surface density: if there is a heat 

transfer from a surface with a constant temperature �/ to the 

room air with a constant temperature 	�7 , then the surface 

density of the heat flux should be determined using the 

dependence (13): 


 = 	6-��/ −	�7)	             (13) 

Here 6-	is some constant (external conductivity), �/ is the 

temperature of the heated surface, �7 is ambient air 

temperature. If it is assumed that air velocity near the surface 

does not change during the heat exchange, then 6- would also 

be a constant. 

Fourier also noted that the constant 6-	should be different 

for different media, should depend on temperature, and can 

also be determined experimentally. So, it is easy to see now 

that Fourier's law does not differ much from Richmann's 

cooling law (12), so it would make sense to call it the 

“Fourier-Richman’s cooling law”. 

Now let’s compare expressions that are corollaries from the 

first law of thermodynamics with the other known cooling 

laws. Since thermodynamic systems can be substantially 

different, let’s consider the simplest case: a liquid is being 

heated in the channel in the absence of fields, phase transitions, 

and doing work. In this case, the first law of thermodynamics 

in scalar form (1) would simply look as 

�� = �� 

In vector form, the same law can be written out in different 

forms (4) and (7). Table 1 shows the expressions for cooling 

laws and the first law of thermodynamics in this simple case. 

Table 1. The first law of thermodynamics and the laws of cooling. 

Law Scalar form Vector Form Corollary of law 

The first law of thermodynamics �� = ��  
�
 = 	�	�∇� 

�
 = 	)∇�*d∇T  


 = 	�	∇� 


 = 	
+

*,-
∇�*,-  

Fourier’s thermal conduction law  
 = 	�	∇�   

Fourier-Richmann’s cooling law  
 = 	6-��/ −	�7)  

"Fictitious" Newton's cooling law  
 = 	.	��/	 − �)  

"True" Newton cooling law �� = ��    

 

Here are several conclusions that can be drawn from the 

comparison of the laws presented in Table 1. The "true" 

Newton’s cooling law is consistent with the first law of 

thermodynamics in scalar form, but all other cooling laws 
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differ from it in scalar and vector forms. Also, Fourier’s law of 

heat conduction is a corollary of the first law of 

thermodynamics in vector form in a special case – when 

thermal conductivity coefficient is a constant. So, it can be 

concluded that heat transfer by heat conduction takes place in 

media with a stable thermal conductivity coefficient at a 

constant temperature gradient. 

While the first law of thermodynamics was formulated in 

the 19
th

 century approximately 30 years after the appearance 

of Fourier’s works, the first mentioning of a vector form of the 

first law of thermodynamics is probably happening now, in 

this study, 200 years after Fourier. We believe that Fourier’s 

hypothesis turned out to be true and deserves to be called law, 

although even at a present time it is problematically to 

determine thermal conductivity coefficient without using 

Fourier’s law. 

It can also be concluded from Table 1 that the 

Fourier-Richmann’s cooling law and Newton's “fictitious” 

cooling law are not consistent neither with the first law of 

thermodynamics, nor with its corollaries. This fact leads to 

conclusion that these laws are not very well substantiated from 

the physics point of view. 

From the physics point of view, at least two systems usually 

participate in a thermal interaction. The first one loses heat to 

the second one, and the second one absorbs it. If one to use 

internal energy as a scalar measure of thermal motion, then, in 

accordance with the first law of thermodynamics in scalar 

form, the energy supplied to the system should be written out 

as the loss of the internal energy of the heat-losing system. At 

the same time, the internal energy of the heat-absorbing 

system will increase by exactly the same amount. At present 

time we usually calculate internal energy as being 

proportional to the temperature difference in the system after 

the interaction and before the interaction. It looks like two 

observers measure temperature differences independently, 

each in its own system: an observer in a heat-losing system 

measures temperature difference in his system, and an 

observer in the heat-absorbing system measures the 

temperature difference in his system. This means that in the 

heat transfer equation (both in Fourier-Richmann’s cooling 

law and in "fictitious" Newton’s cooling law) the right side 

should be air (or liquid) temperature difference after heating 

and before heating, i.e. a difference in temperatures measured 

in the heat-absorbing system. But these expressions show 

temperature difference between heat-losing and 

heat-absorbing systems. In other words, these cooling laws are 

not consistent with the first law of thermodynamics in scalar 

form. 

And they are not consistent with the first law of 

thermodynamics in vector form either. According to the first 

law of thermodynamics, a vector measure of thermal motion is 

a function of the temperature gradient. But in 

Fourier-Richmann’s law and Newton's “fictitious” cooling 

law there are no gradients. 

Because of all this, it can be concluded that these 

expressions that are considered laws are actually not laws, 

because they contradict the law of motion conservation 

(quantities of motion), i.e. they contradict the first law of 

thermodynamics. In the next section we will show how to 

write out an expression for the heat flux surface density that is 

consistent with the first law of thermodynamics. 

4. Heat Flux Surface Density as a 

Function of Process Parameters and 

System Geometry 

The results of theoretical and experimental studies on 

convective heat transfer are usually written out as criterial 

equations based on the calculation of the heat transfer (heat 

exchange) coefficient with the help of the expression (9). No 

physics laws have been mentioned that can be used in 

determining this variable. This leads to a possibility that 

calculations can be made without using heat transfer 

coefficient and “fictitious" Newton’s cooling law. 

The calculations can be simplified if variables that we’re 

looking for are expressed in terms of parameters that 

determine heat transfer process. In the process of heat 

exchange one of the systems loses heat and another one 

absorbs heat. Because of that the intensity of the energy 

transfer process in the form of heat (energy surface flux 

density) can be described independently by using 

macroparameters of either heat-losing or heat-absorbing 

systems. Let’s assume that there are two observers, one in the 

heat-losing system, and another one in the heat-absorbing 

system. Each of them shows the amount of transmitted energy 

per second referred to the square meter of the heat exchange 

surface	
 through the macroparameters of its own system. It is 

clear that these expressions can take different form, but 

numerical value of the heat flux density would be the same. If 

necessary, these expressions can be set equal to each other. [15, 

16, 17]. Let’s see how this process can be described, for 

example, in case of a problem of heating a moving liquid in a 

pipe. 

An observer in a heat-losing system (for the purpose of this 

discussion, responsible for observing heat supply conditions) 

can think something like that: what would the density of heat 

flux depend on? It would be clear to him that only on the 

power of the energy source. In turn, the power of the energy 

source determines surface temperature �/ , i.e. the surface 

density of the heat flux is a function of the wall temperature 


��/).	Respectively, 

�
 = 	
��

��8
��/                (14) 

To find	
, it is necessary to know (from assumptions or 

experiments) partial derivative 
��

��8
. For example, it can be 

assumed that the higher would be the wall temperature, the 

higher would be the heat flux density. This linear dependence 

would be the simplest one, showing that the partial derivative 

of the heat flux density with respect to the wall temperature is 

equal to a certain constant value	3. 

In order to solve the equation (14) it would be necessary to 

set the initial conditions. The simplest would be a condition 
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that heat flux density equals zero when temperature equals 

zero. From a formal point of view this condition would be 

acceptable, but from the physics point of view it wouldn’t 

work, because physical systems cannot be distinguished from 

each other at an absolute zero temperature. And conditions are 

set in place just for that very reason – to distinguish one 

physical system from all others. 

It can be also assumed that heat flux density equals zero 

when wall temperature equals average liquid temperature at 

the channel entrance, or average liquid temperature at a 

channel cross-section at some distance from channel entrance. 

In this case there will be a linear dependence between the heat 

flux density and the temperature difference, i.e. an equation 

similar to the Fourier-Richmann’s cooling law. But in our 

problem of heating a moving liquid in a pipe this dependence 

should not be linear. Heating of the liquid would take place 

only when wall temperature is higher than the average liquid 

temperature along the cross-section of the channel. Heat flux 

density should be zero until wall temperature becomes higher 

than the average temperature along the cross-section of the 

channel, meaning that the function 
��/) must be smooth 

and concave. 

It seems natural to assume that heat flux density increases to 

infinity along with the increasing wall temperature. This 

condition is satisfied by an exponential function whose 

derivative with respect to the wall temperature is equal to 

��

��8
 =	
93:;

<=�8             (15) 

Here 
9	and 3:	are some constants. 

If one to integrate equation (14) with the expression (15) 

under the condition that	
 = 0 (wall temperature assumes a 

certain value when heat transfer stops, i.e. �/ = 	�) , one 

arrives at expression (16): 


 = 	
9	�;
<=�8 −	;<=	�)           (16) 

In other words, the observer in the heat-losing system 

believes that the intensity of the heat loss depends on the 

temperature of the heating surface. As a result of the fluid 

moving along the channel, heat flux density decreases, as the 

heat-absorbing system comes into equilibrium with the 

heat-losing system. The equilibrium occurs when the wall 

temperature becomes equal to the average cross-section 

channel temperature. In this situation heat exchange stops, and 

heat flux density becomes zero. This process is perfectly 

consistent with the laws of thermodynamics. 

If we’re interested only in an average temperature of the 

channel cross-section, we can obtain an expression that 

replaces law of cooling in the form (9). It can be done in 

several ways – for example, using a dimensional analysis, or 

using the first law of thermodynamics in scalar form. 

Let’s assume a medium (a liquid or a gas) enters a channel 

with an average cross-section temperature < �9 > . The 

medium is heated through the side surface of the channel. The 

average temperature of the channel cross-section < � > 

changes along the channel length from < �9 >  (at the 

channel entrance) to some value < � >  at a distance �@ 

from the channel entrance. Let’s also assume that the average 

velocity of the medium �  at the channel cross-section 

remains constant along the entire channel. The heat supplied 

to the system ��  is spent on changing internal energy, 

performing work A��,	 and mass transfer with the 

environment
��. If to assume that heating in channel takes 

place in a closed system (i.e. there is no mass transfer with the 

environment), the work is not performed, and there is no 

interaction with the external fields, then all energy 	�� , 

supplied in the form of heat, will be spent only to change the 

internal energy of the moving medium	��: that is,	�� = ��. 

At present, it is believed that the change in internal energy 

equal to 

�� = 5 ∙ 4 ∙ � < � >, 

where	5 is the heated mass, 4	is the specific heat at constant 

volume. 

If the amount of heat is measured in J / s and, accordingly, 

the mass in kg / s, then we come to the expression (17): 

�� = 5 ∙ 4 ∙ � < � >	            (17) 

Let’s divide the left and right sides of equation (17) by the 

side surface of the channel (heat exchange surface area). Then 

at the left-hand side of (17) we’ll obtain the heat flux surface 

density. Expression (17) then takes the form (18) [15-17]: 


 = 	
C∙D∙0E�F

G∙0H
=	

I

G
J4�

0E�F

0H
,          (18) 

where	K is the channel cross-section; Π is the perimeter of the 

channel. 

If the channel is flat with height ℎ and width b, it would be 

sufficient to write in the expression (18) that K = ℎM  and 

П	= 2�ℎ + M). For a straight cylindrical pipe with the radius O 

expression (18) takes the form (19): 


 = 	
P

:
J4�

0E�F

0H
               (19) 

It must be noted that as the characteristic size of the system 

� it is necessary to set not the whole pipe diameter, as it is 

sometimes done, but only ¼ of the pipe diameter. The problem 

of choosing characteristic size of the system is often faced by 

the modern researchers when presenting experimental data as 

a product of dimensionless numbers (similarity criteria). 

Various researchers offer to choose different things as � : 

radius of the pipe, diameter of the pipe, height of the slit of the 

flat channel, ½ of the height of the slit, the equivalent diameter 

of the channel, and an area of the channel [18]. In 

thermodynamic approach (as seen from expression (18)), the 

characteristic dimension should be set as the ratio of the 

cross-sectional area of the channel K to its perimeter Π. 

Expressions (18) and (19) can be used to calculate 

distribution of an average channel cross-section temperature 

< � > �@)	if the heat flux density 
 is known, or, conversely, 

the heat flux density can be found from the known temperature 

distribution. 

It is also interesting to notice that expression (18) resembles 

Fourier’s law. The product of the variables in front of the 

temperature gradient in equation (18) has the dimensionality 

of the thermal conductivity coefficient, but it includes velocity. 
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It is possible that this product is a coefficient of convective 

heat conduction, in contrast to the molecular heat conduction, 

as in Fourier's law. 

5. Conclusion 

The paper proposes to write out the first law of 

thermodynamics not only in scalar form, but also in vector 

form. Using first law of thermodynamics in vector form to 

calculate convective heat transfer allows to derive an equation 

for the heat flux surface density that differs from the one used 

traditionally. The paper also shows that Fourier’s thermal 

conduction law is a consequence of the first law of 

thermodynamics in vector form, and that Fourier-Richmann’s 

law of cooling and “fictitious” Newton’s law of cooling do not 

agree with the first law of thermodynamics. 

The results of this study can be used in engineering 

calculations for heat-using devices, as well as in a theoretical 

research. The study also suggests a new possible way to derive 

a nonlinear energy equation – by using vector form of the first 

law of thermodynamics. If previously obtained nonlinear 

Navier-Stokes equation is added to this nonlinear energy 

equation, a system of nonlinear equations could be obtained to 

correctly describe theory and practice of convective heat 

exchange, introducing completely new methods for 

calculating convective heat exchange (without using 

traditional heat transfer coefficients and laws of cooling). 
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