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Abstract: We report an observer effect in an Einstein solid, a quantum-mechanical system, induced by fluctuations of an 
observer’s frame of reference; which has been studied so far under the assumption that the observer’s frame of reference 
remains constant throughout the performance of a measurement, thus, what is actually measured throughout the performance 
of a measurement is an unresolved problem during which the observer’s frame of reference is assumed to fluctuate. We 
investigate the average energy and molar specific heat at constant volume of an Einstein solid measured by an observer with 
fluctuating frame of reference. The Einstein solid consists of N identical non-interacting simple harmonic oscillators per mole, 
where N is the Avogadro’s number at temperature T. The average energy and molar specific heat at constant volume of the 
Einstein solid are formulated for two types of fluctuations of the observer’s frame of reference in order to consider pedagogical 
and experimental demonstrations. The average energy of the Einstein solid is formulated from the definition of canonical 
ensemble average and the molar specific heat at constant volume of it is calculated by differentiating the average energy with T. 
The molar specific heat at constant volume of the Einstein solid exhibits novel features at low temperatures according to the 
distribution of fluctuations of the observer’s frame of reference: 0 and 3R at T = 0 K for square-wave and sawtooth-wave 
fluctuations, respectively, where R is the gas constant. 
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1. Introduction 

The observer effect in physics is the theory that observing 
an object or phenomenon changes that phenomenon. This 
effect can be reduced to insignificance in performing a 
measurement in classical physics because the disturbance 
associated with the measurement can be made small with 
arbitrary precision [1]. The observer effect is thought to be 
inevitable in quantum mechanics because the measurement of 
an object involves an interaction with an observer or apparatus, 
which introduces an unavoidable random disturbance on the 
object [2]. This point of view is a fundamental aspect of the 
Copenhagen interpretation of quantum mechanics [3]. 

The Heisenberg uncertainty relation, a corner stone of the 
Copenhagen interpretation of quantum mechanics, states that 
any precise measurement of the position (momentum) of an 

object is allowed with momentum (position) disturbance, 
whereas simultaneous information about both position and 
momentum of an object is limited by �/4� [4], where � is 
the Planck’s constant. The uncertainty relation has been 
refined by introducing the notion of standard deviation [5], 
and generalized to a pair of observables (for example, time 
and energy) [6]. Of the observer effect and the Heisenberg 
uncertainty relation, M. Ozawa and K. Okamura [7, 8] have 
said that throughout the history of quantum mechanics, the 
observer effect has often been confused with the wave-
nature-induced uncertainty principle. 

Wave function collapse is a key issue regarding the 
theoretical foundation of the concept of measurement in 
quantum mechanics, where the wave function of an object is 
expressed as the superposition of all the eigenstates of the 
object prior to a measurement being performed. When a 
measurement is performed, the wave function of an object is 
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collapsed to a single and definite value [9]. How the wave 
function of the object collapses is still on debate [10–19]. 

The observer effect in quantum mechanics has been studied 
under the assumption that an observer’s frame of reference 
remains constant — conventionally, it is taken to be equal to 
zero — throughout the performance of a measurement. Thus, it 
is an unresolved problem as to what is actually measured 
throughout the performance of a measurement during which 
the observer’s frame of reference is assumed to fluctuate. The 
observer effect induced by fluctuations of an observer’s frame 
of reference is the principal issue in this study. 

We investigate the average energy and molar specific heat at 
constant volume of an Einstein solid measured by an observer 
with fluctuating frame of reference. We formulate the average 
energy and molar specific heat of the Einstein solid for two 
types of fluctuations of the observer’s frame of reference in 
order to consider pedagogical and experimental demonstrations: 
square-wave and sawtooth-wave fluctuations, in time 
representations. The molar specific heat at constant volume of 
the Einstein solid exhibits novel features at low temperatures: it 
is 0 at temperature T = 0 K but it has a peak at low temperatures 
for square-wave fluctuations; and it converges to 3�  for 
sawtooth-wave fluctuations where � is the gas constant. In this 
regard, the molar specific heat at constant volume of the Einstein 
solid with a varying temperature would reveal the distribution of 
fluctuations of the observer’s frame of reference. 

2. The Average Energy of a Simple 

Harmonic Oscillator 

A one-dimensional (1D) quantum-mechanical simple 
harmonic oscillator (QSHO) [20] is an element of an Einstein 
solid, the Hamiltonian, H, of which is expressed as � �
	 

��


�� �	
��������, where p and x are the momentum and 

position operators, respectively; ��  is the mass of the 
oscillator; and ��  (� 2�� ) is the angular frequency. The 
energy of the nth eigenstate ��  is expressed as �� �
	�� � 


�� �� , where 	� � 0, 1, 2,∙∙∙ . Given an observer with 

fluctuating frame of reference, 	�� !"#$ , the measured 
energy for �� at time t, ��"#$, can be expressed as ��"#$ �	�� % �� !"#$ (see figure 1). 

The average energy of the 1D QSHO with time interval 
∆t	"� #! %	#($ under �� !"#$,	), is expressed as 
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,           (1) 

where #( and #! are the initial and final times measured by 
the observer, respectively, and β � 1/;< , where k is the 
Boltzmann’s constant. 

An Einstein solid consists of N identical non-interacting 
3D QSHOs per mole, where N is the Avogadro’s number. The 
average energy of the Einstein solid,	=, is expressed as 

= � 	3>).                  (2) 

 
Figure 1. Schematic energy diagram of a quantum-mechanical simple 

harmonic oscillator (QSHO). (a) The energy of the nth eigenstate,	��, where 

� � 0, 1, 2,∙∙∙ . Fluctuating frame of reference at time 	# , 	�� !"#$ . (b) 

Measured energy for ��  at time 	# , 	��"#$"�	�� % �� !"#$$ . Stationary 

frame of reference,	�� !, is taken to be equal to 0. 

3. An Einstein Solid under Square-Wave 

Fluctuations 

Given periodic E� !"#$ � A B
/2	for	0 F 	#	 G <
/2
%B
/2	for	<
/2 F 	#	 G <
 

(see figure 2 (a)), the measured energy for ��  at time t, 
��"#$, can be expressed as 

E�"#$ � A E� % B
/2	for	0 F 	#	 G <
/2
	E� � B
/2	for	<
/2 F 	#	 G <
,       (3) 

where ε
/2  and <
  are the amplitude and period of the 
square-wave fluctuations. 

 
Figure 2. (a) Fluctuating frame of reference at time	#,	�� !"#$, for square-wave fluctuations, whose amplitude and period are B
/2 and <
, respectively. (b) 

Fluctuating frame of reference at time	#,	�� !"#$, for sawtooth-wave fluctuations, whose amplitude and period are B�/2 and <�, respectively. 
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3.1. Square-Wave Fluctuations with a Half Period 

For an observer with fluctuating frame of reference by means of half-period square-wave fluctuations, the corresponding 
average energy of the Einstein solid,	=�, is expressed as 

=� � 	3>	 ∑ 	",-2	B1/2$/01I23,-J	3B1/2K8-9

∑ 	/01I23,-J	3B1/2K8-9


= 	3> L!
� coth �

L!
�OP� − 3>

B1
� ,                   (4) 

where #( = 0	and	#! =	<
/2. 
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L!
�OP� + 3>

B1
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where #( = <
/2	and	#! =	<
. 
The molar specific heat at constant volume of the Einstein solid under half-period square-wave fluctuations of the observer’s 

frame of reference, QR�, is expressed as 

QR� = "4S
4P $R = 3� "TUVW$
V

XYZ[V�TUVW�
,                                      (6) 

where \, = ℎ�/; is an Einstein temperature and R = Nk. For all 	\, > 0, QR� is 0 at T = 0 K, monotonically increases with T, 
and saturates to 3R [21] at high-temperature limits (</\, ≫ 1), which agrees with that of the Einstein solid published in 1906 
[22]. 

3.2. Square-Wave Fluctuations at Low-Frequency Limits 

For an observer with fluctuating frame of reference by means of square-wave fluctuations at low-frequency limits, the 
corresponding average energy of the Einstein solid, =�′, is expressed as 

=�′ = 	3>	 ∑ 	",-2	B1/2$/01I23,-J	3B1/2K8-9

∑ 	/01I23,-J	3B1/2K8-9


= 	3> L!
� coth �

L!
�OP� − 3>

B1
� ,                       (7) 

where #( = 0	and	#! ≪	<
/2. 
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= 	3> L!
� coth �

L!
�OP� + 3>

B1
� ,                       (8) 

where #( = <
/2	and	#! ≪	<
. 
The molar specific heat at constant volume of the Einstein solid under square-wave fluctuations of the observer’s frame of 

reference at low-frequency limits, QR�′, is expressed as 

QR�′ = "4S
a4P $R = QR�.                                          (9) 

3.3. Square-Wave Fluctuations with One Period 

For an observer with fluctuating frame of reference by means of one-period square-wave fluctuations, the corresponding 
average energy of the Einstein solid, =
, is expressed as 

=
 = 	3>	
∑ 	{	"�� −	B1/2$	 expI−f�� +	fB1/2K +	"�� + B1/2$	exp	"−f�� − 	fB1/2$}h
�i�

∑ 	{expI−f�� + fB1/2K + 	exp	"−f�� − 	fB1/2$}h
�i�

 

	= 	3> L!
� coth �

L!
�OP� − 3>

B1
� tanh �

B1
�OP�,                             (10)

#( = 0 and #! =	<
. 
The molar specific heat at constant volume of the Einstein solid under one-period square-wave fluctuations of the observer’s 

frame of reference, QR
, is expressed as 

QR
 = "4Sl4P $R = 3� "TUVW$
V

XYZ[V�TUVW�
+ 3� "TmVW$

V

noX[V�TmVW�
,                            (11) 

where \p = ε
/;. 
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Figure 3. Molar specific heat at constant volume divided by	3�,	QR
/3�, as 

a function of </\,  for various \p/\, , where �  is the gas constant. 

Here,	\p/\, = 0.99 (red), 0.7 (yellow), 0.5 (green), 0.3 (cyan), 0.15 (blue), 

and 0.05 (black). 

In figure 3, QR
/3� is displayed as a function of </\, for 
various \p/\,. The molar specific heat at constant volume of 
the Einstein solid under one-period square-wave fluctuations 
of the observer’s frame of reference (QR
) is 0 at T = 0 K, 
monotonically increases with T, and saturates to 3R [21] at 
high-temperature limits (</\, ≫ 1). However, it has a peak 
at </\, 	q 0.02 for 	\p/\, = 0.05, which, induced by one-
period square-wave fluctuations of the observer’s frame of 
reference, is gradually broadened with \p/\,. 

3.4. Square-Wave Fluctuations at High-Frequency Limits 

For an observer with fluctuating frame of reference by 
means of square-wave fluctuations at high-frequency limits, 
the corresponding average energy of the Einstein solid,	=
′, 
is expressed as 

=
a q 	3>	 ∑ 	b	",-2B1/2$	/01"23,-J3B1/2$J	",-JB1/2$	/01	"23,-2	3B1/2$g8-9

∑ 	b/01"23,-J3B1/2$J	/01	"23,-2	3B1/2$g8-9


	� 	=
                    (12) 

where #( � 0	and	#! ≫	<
. 
The molar specific heat at constant volume of the 

Einstein solid under square-wave fluctuations of the 
observer’s frame of reference at high-frequency limits, QR
′, 
is expressed as 

QR
′ � "4Sla4P $R q QR
.              (13) 

4. An Einstein Solid under  

Sawtooth-Wave Fluctuations 

Given periodic E� !"#$ �	 rVPV # %	 rV�  for 0	 F # G	<� (see 

figure 2 (b)), the measured energy for �� at time t, ��"#$, 
can be expressed as 

E�"#$ � 	�� %	 rVPV # �	 rV� , for	0	 F # G 	<�,      (14) 

where ε�/2  and <�  are the amplitude and period of the 
sawtooth-wave fluctuations. 

4.1. Sawtooth-Wave Fluctuations with One Period 

For an observer with fluctuating frame of reference by 
means of one-period sawtooth-wave fluctuations, the 
corresponding average energy of the Einstein solid, =� , is 
expressed as 

=� � 	3>	∑ + ��"#$	exp"%f��"#$$s#PV
�

h�i�
∑ + 	exp"%f��"#$$s#PV

�
h�i�

 

� 3> L!
� coth � L!

�OP� � 3>;<b1 % rV
�OP coth �

rV
�OP�g.    (15) 

The molar specific heat at constant volume of the Einstein 
solid under one-period sawtooth-wave fluctuations of the 
observer’s frame of reference,QR�, is expressed as 

QR� � "4SV4P $R � 3� "TUVW$V
XYZ[V�TUVW�

� 3�b1 % "TtVW$V
XYZ[V�TtVW�

g,   (16) 

where \u � B�/;. 

 
Figure 4. Molar specific heat at constant volume divided by 3R,	QR�/3�, as 

a function of </\,  for various \u/\, , where \u/\,  = 0.99 (red), 0.9 

(orange), 0.7 (yellow), 0.5 (green), 0.3 (cyan), 0.1 (blue), and 0.01 (black). 

In figure 4, QR�/3� is displayed as a function of </\, for 
various	\u/\,. The molar specific heat at constant volume of 
the Einstein solid under one-period sawtooth-wave 
fluctuations of the observer’s frame of reference (QR�) is 3� 
at T = 0 K, monotonically decreases, reaches a minimum, 
monotonically increases with T, and saturates to 3R [21] at 
high-temperature limits (</\, ≫ 1). The minimum increases 
with		\u/\,  and saturates to 3R. The one-period sawtooth-
wave fluctuations induce the convergence of QR� � 3� at T 
= 0 K — a phenomenon that is not governed by the third 
thermodynamic law [23, 24], which states that the specific 
heat of any Einstein solid is 0 at T = 0 K, but governed by the 
Dulong-Petit law [21]. 

4.2. Sawtooth-Wave Fluctuations at Low-Frequency Limits 

For an observer with fluctuating frame of reference by 



 American Journal of Physics and Applications 2019; 7(1): 21-26 25 
 

means of sawtooth-wave fluctuations at low-frequency limits, 
the corresponding average energy of the Einstein solid, =�′, 
is expressed as 

=�a ≈ 	3>	∑ 	"�� + 	α$exp"−f�� − 	fα$h
�i�
∑ 	exp"−f�� − 	fα$h
�i�

=	 

3> L!
� coth �

L!
�OP� + 3>α,            (17) 

where 0 < ∆t ≪ 	<� and −ε�/2 ≤ α ≤ ε�/2. 
The molar specific heat at constant volume of the Einstein 

solid under sawtooth-wave fluctuations of the observer’s 
frame of reference at low-frequency limits, QR�′, is expressed 
as 

QR�′ = "4SVa4P $R ≈ QR�.              (18) 

4.3. Sawtooth-Wave Fluctuations at High-Frequency Limits 

For an observer with fluctuating frame of reference by 
means of sawtooth-wave fluctuations at high-frequency 
limits, the corresponding average energy of the Einstein solid, 
=�′′, is expressed as 

=�aa ≈ 	3>	 ∑ + ,-".$ /01I23,-".$K4.WV



8-9

∑ + /01I23,-".$K4.WV



8-9


=	=�,    (19) 

where ∆t ≫ 	<�. 
The molar specific heat at constant volume of the Einstein 

solid under sawtooth-wave fluctuations of the observer’s 
frame of reference at high-frequency limits, 	QR�′′ , is 
expressed as 

QR�′′ = "4SVaa4P $R ≈ QR�.            (20) 

5. Conclusions 

In this paper, we succeeded in introducing a novel 
observer effect in an Einstein solid under fluctuations of an 
observer’s frame of reference. The average energy and 
corresponding molar specific heat at constant volume of the 
Einstein solid are formulated for two types of fluctuations of 
the observer’s frame of reference: periodic square-wave and 
sawtooth-wave fluctuations, in time representations. Under 
the square-wave fluctuations with one period or at high-
frequency limits, the molar specific heat at constant volume 
of the Einstein solid at high-temperature limits is similar with 
that of a conventional Einstein solid. However, it has a peak 
at low temperatures under the fluctuations and is gradually 
broadened with the amplitude of the fluctuations. Under the 
sawtooth-wave fluctuations with one period or at high-
frequency limits, the molar specific heat at constant volume 
of the Einstein solid at high-temperature limits is also similar 
with that of the conventional Einstein solid. However, it is 
3� at T = 0 K, monotonically decreases, reaches a minimum, 
and monotonically increases with T at low temperatures. 
Therefore, the molar specific heat at constant volume of the 
Einstein solid at low temperatures would provide criteria for 
characterizing the distribution of fluctuations of the 

observer’s frame of reference. 
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