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Abstract: This study reports tunneling through a one-dimensional (1D) square potential barrier (SPB) under fluctuations in 
an observer’s frame of reference (OFR). To date, tunneling through an SPB has been studied under the assumption that the 
OFR remains constant throughout the tunneling measurements; therefore, the change of the tunneling probability when the 
OFR is assumed to fluctuate remains unanswered. In this paper, a 1D SPB is considered under fluctuations of an OFR. The 
average transmission probability of a particle through an SBP for two types of OFR fluctuations (periodic-square-wave and 
periodic-sawtooth-wave fluctuations) is formulated in time representations. Under these types of fluctuations, the average 
transmission probability gradually increases with a particle’s energy, which is saturated to the transmission probability in the 
case of the stationary OFR at a much greater energy than the amplitude of the fluctuations. The average transmission 
probability is much higher at the amplitude of the fluctuations in the case of periodic-square-wave fluctuations. Therefore, the 
average transmission probability with a particle’s energy has the potential to reveal the distribution of OFR fluctuations. 

Keywords: Tunneling, Potential Barrier, Observer Effect, Fluctuations of an Observer’s Frame of Reference,  
Fluctuating Frame of Reference 

 

1. Introduction 

Tunneling is the quantum mechanical phenomenon in 
which a particle passes through a potential barrier. It is 
fundamental to understanding the wave nature of particles [1-
3] and plays a central role in various practical applications, 
such as in radioactive disintegration [4-11], electron 
tunneling devices [12-15], quantum computation [16-22], and 
scanning tunneling microscopy [23-29]. 

Particle tunneling can occur in a potential barrier with a 
thickness in the order of nanometers or less [23-25]. 
Tunneling can be estimated in terms of Heisenberg’s 
uncertainty principle [3], which holds that measuring the 
momentum (position) of a particle can be conducted with 
precision, whereas the resulting position (momentum) 
disturbance of the particle is limited by Planck’s constant 
divided by the uncertainty of the momentum (position) of the 
particle. When a particle is located at a potential barrier, it 
can pass through the barrier. This is because a particle has 

uncertainty in terms of its momentum; additionally, 
according to Heisenberg’s uncertainty principle, the resulting 
position disturbance of the particle can be greater than the 
width of the barrier. For an example, a square potential 
barrier (SPB) provides an exact solution for calculating the 
transmission probability of a particle; it can quantitatively 
calculate tunneling as well as provide a realistic 
approximation of particle tunneling. 

In this paper, particle tunneling was quantitatively studied 
according to the transmission probability of a particle 
through a potential barrier. To date, tunneling has been 
examined under the assumption that an observer’s frame of 
reference (OFR) remains constant. In much of the research, 
the OFR is assumed to be zero throughout the tunneling 
measurements. Therefore, the change of the tunneling 
probability when the OFR is assumed to fluctuate currently 
remains unanswered. 

Recently, a novel observer effect induced by OFR 
fluctuations was proposed in an Einstein solid [30] and a 
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single-electron transistor (SET) [31]. The molar specific heat 
at a constant volume of an Einstein solid as a function of 
temperature revealed the distribution of OFR fluctuations, 
which exhibited a peak and convergence of three times the 
level of the gas constant at low temperatures under periodic-
square-wave and periodic-sawtooth-wave fluctuations, 
respectively. Regarding the SET, the average current in an 
SET can also reveal the distribution of OFR fluctuations. An 
SET comprised a source, drain, and single channel. The 
average current in it exhibited an asymmetric zero-bias 
Coulomb peak as a function of the energy of the channel 
under periodic-square-wave and periodic-sawtooth-wave 
fluctuations—the amplitude of which gradually increased as 
the amplitude of the fluctuations increased. The amplitude of 
the zero-bias Coulomb peak was greater in the case of 
periodic-square-wave fluctuations. 

An observer effect induced by fluctuations of the OFR can 
be investigated if the reference of energy of a particle is 
matched to an OFR. In this study, the average transmission 
probability of a particle to transmit an SPB [32] was 
investigated under OFR fluctuations. The average 
transmission probability was formulated for two types of 
fluctuations in time representations, namely, periodic-square-
wave fluctuation and periodic-sawtooth-wave fluctuation. 
Under these types of fluctuations, the average transmission 
probability monotonically increases with the energy of the 
particle, which is saturated to the transmission probability in 
the case of a stationary OFR at a much greater energy than 
the amplitude of the fluctuations. The average transmission 
probability rapidly increases just above the energy 
corresponding to the amplitude of fluctuations of the OFR in 
the case of periodic-square-wave fluctuations. Therefore, the 
average transmission probability with a particle’s energy may 
be able to reveal the distribution of OFR fluctuations. 

 
Figure 1. Schematic of a 1D SPB, where �� and � are potential energy and 

width of the barrier, respectively, �	the energy of a particle, ����	
� is the 

energy of an OFR at time 
 . The transmission probability through the 

barrier was monitored by the observer on the right side of the barrier. 

2. Average Transmission Probability 

Through a One-Dimensional Square 

Potential Barrier 

Figure 1 shows a schematic of a one-dimensional (1D) 
SPB, where �� and � are the potential energy and width of 
the barrier, respectively, �  the energy of a particle, and �
��	
� the energy of an OFR at time	
. In this study, �
��	
� 
was assumed to be constant at a time interval between 
 and 
 � �
, where d
 ≪ ∆t		� 
� � 
��. Here, 
�  and 
�  are the 
initial and final times, respectively. If a particle from left (at x ≪ 0 ) was located at the 1D SPB, then the particle’s 
transmission through the barrier was monitored by the 
observer far from the 1D SPB (at x ≫ �). 

In terms of the energy of a particle, 	� � �� , the wave 
function of a particle under the 1D SPB at 
 , �	�, 
� ��	�� !�"#/ħ, where �	�� is expressed as 

�	�� � & �'( � ) !�'( 	for	 � ∞ . � . 0/ �0( � 1 !�0(	for	0 2 � . �	3 �4( 	for	� 2 � . ∞ ,          (1) 

where 5 � √28�/ħ , α � :28	� � ���/ħ , ; �:28�	
�/ħ . Here, 8  is the mass of the particle, ħ  the 
Planck’s constant divided by 2π , �	
� � � � �
��	
�  the 
measured energy for � at time t, and � � �
��	
�. ) and 3 
is the coefficients of reflection and transmission of the 
particle, respectively. The transmission probability of the 
particle through the 1D SPB, 1 � |)|?, can be expressed as 

1 � |)|? � @0A'4	0AB'A�	0AB4A�BC0A'4!	0A!'A�	0A!4A�DEF	?0G�,   (2) 

In terms of the energy of the particle, 0 2 � . �� , the 
wave function of the particle under the 1D SPB at 
 , �	�, 
� � �	�� !�"#/ħ, where �	�� is expressed as 

�	�� � & �'( � ) !�'( 	for	 � ∞ . � . 0/ !H( � 1 H(	for	0 2 � . �	3 �4( 	for	� 2 � . ∞ ,          (3) 

where I � :28	�� � ��/ħ. The transmission probability of 
the particle through the 1D SPB, 1 � |)|?, can be expressed 
as 

1 � |)|? � @HA'4!	HA!'A�	HA!4A�BCHA'4B	HAB'A�	HAB4A�DEFJ	?HG�,    (4) 

For the energy of an OFR at time 
, �
��	
� 2 � . ��, the 
average transmission probability through the 1D SPB with 
time interval ∆t, 1 � |)KLM|?, can be expressed as 

1 � |)KLM|? � N∆# O @HA'4!	HA!'A�	HA!4A�BCHA'4B	HAB'A�	HAB4A�DEFJ	?HG��
#P#Q ,                        (5) 

For an observer with a stationary frame of reference 
(�
��	
� � 0 ), the corresponding transmission probability, 1 � |)R|?, can be expressed as 

1 � |)R|? � C"	ST!"�C"	ST!"�BSTAFUVJA	G:?W	ST!"�/ħ�.      (6) 

It has been found that the transmission probability of a 
particle in stationary OFR, 1 � |)R|?, is 0 at � � 0 and then 
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gradually increases with increasing	�. In the limit of I� ≪ 1, 1 � |)R|? Y 1  (i.e., the barrier is sufficiently thin to be 
transparent). In the limit of I� ≫ 1, 1 � |)R|? Y Z16E	�� ���/��?]exp		�2�:28	�� � ��/ħ�  (i.e., overall 1 � |)R|? 
exponentially increases with increasing �). 

 
Figure 2. (a) Fluctuating frame of reference at time 
 , ����	
� , for 

periodic-square-wave fluctuations, of which the amplitude and period are `N 

and aN , respectively. Measured energy for �  at time 
 , �	
�	� � �����	
��, and stationary frame of reference, ����, which was considered to 

be equal to 0. (b) Fluctuating frame of reference at time 
, ����	
�, for 

periodic-sawtooth-wave fluctuations, of which the amplitude and period are `? and a?, respectively. 

3. Average Transmission Probability 

Through a 1D SPB Under Periodic-

Square-Wave Fluctuations 

Given periodic E���	
� � b�`N	for	0 2 
 . aN/2`N	for	aN/2 2 
 . aN  (figure 

2(a)), the measured energy for �  at time t, �	
� , can be 
expressed as 

�	
� � b� � `N for	0 2 
 . aN/2� � `N for	aN/2 2 
 . aN, (7) 

where εN  and aN  are the amplitude and period of the 
periodic-square-wave fluctuations, respectively. 

3.1. Periodic-Square-Wave Fluctuations of a Half Period 

For an observer with a fluctuating frame of reference by 
means of half-period periodic-square-wave fluctuations, the 
corresponding transmission probability, 1 � |)N,d|? , is 
expressed as 

1 � e)N,Ne? � @	ST!"�:"	"Bfg�!	ST!?"�	ST!?"!fg�BC	ST!"�:"	"Bfg�BST	STBfg�DEFJ	?G:?W	ST!"�/ħ�,              (8) 

where 
� � 0 and 
� � aN/2. Here, j � 1. 

1 � |)N,?|? � @	ST!"�:"	"!fg�!	ST!?"�	ST!?"Bfg�BC	ST!"�:"	"!fg�BST	ST!fg�DEFJ	?G:?W	ST!"�/ħ�,               (9) 

where 
� � a1/2 and 
� � aN. Here, j � 2. 

3.2. Periodic-Square-Wave Fluctuations of One Period 

For an observer with a fluctuating frame of reference by 
means of one-period periodic-square-wave fluctuations, the 
corresponding transmission probability, 1 � |)N|? , is 
expressed as 

1 � |)N|? � i0.5 k1 � e)N,Ne?l � 0.5 k1 � e)N,?e?l 	for	� � `N	0.5 k1 � e)N,Ne?l 	for	0 2 � . `N , (10) 

where 
� � 0 and 
� � aN. 
As shown in figure 3, the average transmission probability 

of a particle with an electron’s mass, 1 � |)N|?, is displayed 
as a function of � , where �� � 1 eV [33]. 1 � |)N|?  is 0 
at	� � 0 and then gradually increases with � to just above � � `N and is saturated to the transmission probability in the 
case of the stationary OFR (`N � 0), 1 � |)R|?. In the limit 
of I� ≪ 1  and `N ≪ � . �� , 1 � |)N|? Y 1 . As an 
example, for a SPB with � � 1	pm, the barrier is transparent 
at high energies, as shown in figure 3(a). In the limit of I� ≫ 1  and � ≪ `N , 1 � |)N|? Y Z8	�� � ��:�`N/��?]exp	�2�:28	�� � ��/ħ�. For a SPB with � � 1	nm, 
overall 1 � |)N|? exponentially increases with increasing � 
and is distinguished from 1 � |)R|?, as shown in figure 3(b). 

 
Figure 3. Average transmission probability of a particle with an electron’s mass through the 1D SPB under the periodic-square-wave fluctuations, 1 � |)N|?, 

as a function of � at (a) �=1 pm and (b) �=1 nm. Here, `N=0.01 meV (light gray), 0.1 meV (gray), and 1 meV (black). The dotted lines denote the 

transmission probability of the particle under stationary OFR, 1 � |)R|?, which corresponds to 1 � |)N|? at `N=0. �� is set as 1 eV. 
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3.3. Periodic-Square-Wave Fluctuations at High-Frequency 

Limits 

For an observer with a fluctuating frame of reference by 
means of periodic-square-wave fluctuations at high-
frequency limits, the corresponding transmission probability,  1 � |)N′|?, is expressed as 

1 � |)N′|? Y 1 � |)N|?,             (11) 

where 
� � 0 and 
� ≫ aN. 

4. Average Transmission Probability 

Through a 1D SPB Under Periodic-

Sawtooth-Wave Fluctuations 

Given periodic E���	
� � `? � ?qArA 
  for 0 2 
 . a? 

(figure 2(b)), the measured energy for �  at time 
 , �	
�, 

can be expressed as 

�	
� � � � `? � ?qArA 
, for 0 2 
 . a?,     (12) 

where ε?  and a?  are the amplitude and period of the 
periodic-sawtooth-wave fluctuations, respectively. 

4.1. Periodic-Sawtooth-Wave Fluctuations of One Period 

For an observer with a fluctuating frame of reference by 
means of one-period periodic-sawtooth-wave fluctuations, 
the corresponding transmission probability, 1 � |)?|? , is 
expressed as 

1 � |)?|? � &1 � e)?,Ne? for	� � `?1 � e)?,?e? for	0 2 � . `?,    (13)

where 

1 � |)?,N|? � N?fA O @	ST!"�:"	"Bq�!	ST!?"�	ST!?"!q�BC	ST!"�:"	"Bq�BST	STBq�DEFJ	?G:?W	ST!"�/ħ��`fA!fA , 

and 

1 � |)?,?|? � N?fA O @	ST!"�:"	"!q�!	ST!?"�	ST!?"Bq�BC	ST!"�:"	"!q�BST	ST!q�DEFJ	?G:?W	ST!"�/ħ��`"!fA . 

As shown in figure 4, the average transmission probability 
of a particle with an electron’s mass, 1 � |)?|?, is displayed 
as a function of �  where �� � 1 eV [33]. 1 � |)?|?  is 0 
at	� � 0; it gradually increases with	� and is saturated to the 
transmission probability in the case of the stationary OFR, 1 � |)R|? . The change of 1 � |)?|?  with respect to � 
around	`? is much slower than in the case of the periodic-
square-wave fluctuations, 1 � |)N|?. In the limit of I� ≪ 1 
and `? ≪ � . �� , 1 � |)?|? Y 1 (i.e., the barrier is 
sufficiently thin so as to be transparent). For an SPB with � � 1	pm  as an extremely thin barrier, 1 � |)?|?  is 
saturated to 1 at high energies, as shown in figure 4(a). 
Figure 4(b) shows 1 � |)?|? as a function of � for a thicker 
SPB with 	� � 1	nm , where the overall 1 � |)?|?  also 
exponentially increases with increasing � . In the limit of 

I� ≫ 1  and � ≪ `? , 1 � |)?|? Y Z16	�� � ��:�`?/3��?]exp		�2�:28	�� � ��/ħ� , which is clearly 
distinguished from both 1 � |)R|? and 1 � |)N|?. 

4.2. Periodic-Sawtooth-Wave Fluctuations at High-

Frequency Limits 

For an observer with a fluctuating frame of reference by 
means of periodic-sawtooth-wave fluctuations at high-
frequency limits, the corresponding transmission probability, 1 � |)?′|?, is expressed as 

1 � |)?′|? Y 1 � |)?|?,          (14) 

where 
� � 0 and 
� ≫ a?. 

 
Figure 4. Average transmission probability of a particle with an electron’s mass through the 1D SPB under the periodic-sawtooth-wave fluctuations, 1 �|)?|?, as a function of � at (a) �=1 pm and (b) �=1 nm. Here, `?=0.01 meV (light gray), 0.1 meV (gray), and 1 meV (black). The dotted lines denote 1 � |)R|?. �� is set as 1 eV. 
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5. Conclusions 

In this paper, tunneling through an SPB was studied under 
the periodic fluctuations of an OFR. A particle’s average 
transmission probability was quantitatively calculated. 
Furthermore, the average transmission probability was 
formulated for two types of fluctuations in time 
representations, namely, periodic-square-wave fluctuation 
and periodic-sawtooth-wave fluctuations, based on the 
assumption that the reference of the particle’s energy was 
matched to the OFR. Under periodic-square-wave 
fluctuations of one period or at high-frequency limits, the 
average transmission probability was 0 at the energy of the 
particle, � =0; it gradually increased with the increasing 
energy of the particle, rapidly increased just above the 
amplitude of the fluctuations, and saturated to the 
transmission probability in the case of the stationary OFR. 
Similarly, under periodic-sawtooth-wave fluctuations of one 
period or at high-frequency limits, the average transmission 
probability gradually increased with the increasing energy of 
the particle but showed a much smoother increase above the 
amplitude of the fluctuations. Therefore, the average 
transmission probability through an SPB with a particle’s 
energy provides clear criteria for characterizing the 
distribution of OFR fluctuations. 
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