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Abstract: The thermalization of two blocks with different initial temperatures in an insulated recipient is an irreversible 

process, so the entropy of the system will increase during this process. Lima (Eur. J. Phys. 36 (2015) 068001) has given an 

elegant and concise proof for that which had been proved by Mungan (Eur. J. Phys. 36 (2015) 048004) with a complex method. 

However, there are still two problems in Lima’s proof: 1. It is assumed that the heat capacities of two blocks are constants, 

which is not true in most practical cases. 2. An inequality that describes the concavity of the logarithm function was used but it 

is still relatively uncommon for beginners. In this article, two stricter and simpler proof were given for the problem 1 by 

making use of 1/T–Q diagram and T-S diagram, respectively. In the Proof by 1/T–Q diagram, the area under the curve of 1/T 

over the domain [0, Q0] is the value of the entropy change of the cooler block, which is positive; while the area under the curve of 

1/T’ over the domain [Q0, 0] is the value of the entropy change of the hotter block, which is negative. It is rather intuitive to 

compare these two values by using the monotonicity and domains of T and Т’. A similar method is adopted in the proof by T-S 

diagram. For the problem 2, another proof for the key inequality in Mungan’s paper was given by using elementary geometric 

method which is really more suitable for physics beginners. 
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1. Introduction 

The thermalization of two blocks with different initial 

temperatures in an insulated recipient is an irreversible 

process. According to the second law of thermodynamics, the 

entropy of the system will increase (the sum of the entropy 

changes of the two blocks is greater than zero). It may be due 

to the difficulty or length, there is no proof for that in the 

existing textbooks [1-15]. Mungan and Lima successively 

presented their proofs in reference [16, 17]. Mungan’s proof 

feels rather complicated, which was improved by Lima, whose 

proof is concise and elegant. However, there are still two 

problems in it: 1. It is assumed that the heat capacity of the 

blocks are constants, which is not true in most practical cases. 

2. An inequality that describes the concavity of the logarithm 

function was used but this inequality is still relatively 

uncommon for beginners. In this article, a stricter and 

simpler proof was given for the first problem making use of 

Q–1/T diagram and T-S diagram respectively. For the second 

problem, another proof for the key inequality in Mungan’s 

paper was given by using elementary geometric method 

which is really more suitable for physics beginners. 

2. Brief Description of the Problem 

Suppose there are two blocks 1 and 2 in an insulated 

recipient, their initial temperatures are 1T and 2T (without loss 

of generality, assume that 1 2 0T T> > ), and their heat 

capacities are 1C and 2C . When they are brought to contact 

each other, they exchange energy as heat and come to a final 

state called equilibrium state, both with the same temperature 

eqT ( 1 2eqT T T> > ). 

When calculating the entropy change of the system, a 

quasi-static process needs to be set up, for example, two 

temperature-controlled heat sources are used to contact the 

two blocks respectively [2], so that their temperature slowly 
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decreases or rises to eqT . In this process, the entropy changes 

of block 1 and 2 are: 

1

dQ
S

T
∆ = ∫                 (1) 

and 

2

dQ
S

T

′
∆ =

′∫                (2) 

respectively. 

The variable T ( T ′ ) in the formula is the real-time 

temperature of the block 1 (2), its value gradually decreases 

(increases) from 1T ( 2T ) to eqT , 1=CdQ dT ( 2=CdQ dT′ ′ ) is 

the heat released (absorbed) by block 1 (2) when its 

temperature changes from T (T ′ ) to +T dT ( +T dT′ ′ ), which 

is a negative (positive) value. In most textbooks and literatures, 

it is assumed that the heat capacities 1C  and 2C  are 

constants (which is often not the case in practice). Substituting

1=CdQ dT  and 2=CdQ dT′ ′  into equations (1) and (2) 

respectively and integrating them can obtain the total entropy 

change of the system [2] 

1 21 1 2 2 1 1 2 2
1 2

1 1 2 2 1 2

ln( ) ln( )
( ) ( )

C CC T C T C T C T
S S S

T C C T C C

+ +
∆ = ∆ + ∆ = +

+ +
 (3) 

According to the second law of thermodynamics, it should 

be greater than zero. That is 

1 21 1 2 2 1 1 2 2

1 1 2 2 1 2

ln( ) ln( ) 0
( ) ( )

C CC T C T C T C T

T C C T C C

+ +
+ >

+ +
   (4) 

At present, no strict proof of the formula above has been 

found in the available textbooks, and most of them are only in 

the form of special cases (such as the equality of 1C  and 2C , 

or one of the two blocks is a constant temperature heat source, 

or give specific heat capacities and initial temperature values, 

etc.) to verify the formula. However, verification is not proof 

after all, because it is not arbitrary. In order to prove that 

formula (4) is true, here are some equivalent transformations: 

1 21 1 2 2 1 1 2 2

1 1 2 2 1 2

0 ln( ) ln( ) 0
( ) ( )

C CC T C T C T C T
S

T C C T C C

+ +
∆ ≥ ⇔ + ≥

+ +
 

2 1 11 1 2 2 1 1 2 2 1 1 2

2 1 2 1 1 2 1 1 2 2

( )
ln( ) - ln( ) = ln( )

( ) ( )

C C CC T C T C T C T T C C

T C C T C C C T C T

+ + +
⇔ ≥

+ + +
 

2 11 1 2 2 1 1 2

2 1 2 1 1 2 2

( )
( ) ( )

( )

C CC T C T T C C

T C C C T C T

+ +
⇔ ≥

+ +
(Here I make use of 

the property that the function lnx is a monotone increasing 

function.) 

2
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(In this step, both the 

numerator and denominator were divided by 1 2C T ). 

(Now let 2

1

= 1
C

r
C

− , Then r must be greater than 1, 

namely 
1

0 1
r

< < ; let 1

2

1
T

T
γ= + , then 1 0γ + > ). 

1r
r r r

r r

γ γ
γ

−+ + ⇔ ≥  + 

 

(in this step, the number of the 

variables in the inequality were reduced to two). 

1
( 1)

=

r
r r r r

r r r

γ γ γ
γ γ

−+ + + ⇔ ≥  + + 
 

1
( )

1

r
r r

r r

γ γ γ
−+ + ⇔ ≥ + 

 

 

(According to the settings 

above, 0r γ+ > .) 

1

r
r

r

γ γ+ ⇔ ≥ + 
 

 

1
1+ 1

r

r
γ γ ⇔ ≥ + 

 
               (5) 

1
ln 1+ ln(1 )r

r
γ γ ⇔ ≥ + 

 
 

1 1
ln 1+ ln(1 )

r r
γ γ ⇔ > + 

 
             (6) 

After that, Mungan expanded the left side of inequality (5) 

with binomial theorem and proved the inequality on this basis. 

His proof is as troublesome as Lima pointed out. Lima made 

use a property of concavity of the logarithm function, namely 

ln( ( ) )1 ln ( ) ln1ta t b t a t b+ − > + −  (for all 0< t <1) (7) 

in any open interval (a, b) to prove inequality (6)[17]. His 

proof is concise and elegant. However, inequality (7) is still 

relatively uncommon for beginners. 

3. Mistakes That Are Easy to Make and 

Two New Methods of Proof 

3.1. Mistakes That Are Easy to Make 

Some literatures believe that in the process of 

thermalization between two blocks, whenever the block 1 at 

temperature T transfers a small amount of heat dQ to the block 

2 at temperatureT ′ , the entropy change of the system is (note: 
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T T ′> ) 

0
dQ dQ

dS
T T

−= + >
′

             (8) 

In that case, the entropy change of the whole process must 

be greater than zero. This idea is incorrect in principle, 

because the direct thermalization between two blocks whose 

initial temperature difference is not infinitesimal is an 

irreversible process and therefore cannot be used to calculate 

the entropy change. Now I give the other two proofs which are 

rather simple and strict below. 

3.2. The Proof by 1/T–Q Diagram 

In the quasi-static process set in reference [2], the block 1 

transferred heat Q0 to the temperature controllable heat source 

very slowly and continuously, so formula (1) can be more 

accurately expressed as 

0 0

1
0 0

1
0

Q QdQ
S dQ

T T

−
∆ = = − <∫ ∫        (9) 

Similarly, formula (2) can be expressed as 

0

2
0

1
0

Q

S dQ
T

′∆ = >
′∫            (10) 

Let us consider 1/T and 1/T ′  as some kind of weight or 

distribution function with respect to Q and Q′  respectively. 

Since the change of T and T ′  are monotonous and continuous, 

and the minimum value of T is equal to the maximum value of 

T ′ ( That is to say, the integral weights in formula (10) are 

significantly larger than the integral weights in formula (9) 

except at the balance point where their weights are equal), it 

is obvious that the absolute value of 1S∆  is less than the 

absolute value of 2S∆ , so their sum, that is, the entropy 

change of the system must be greater than zero. Since this 

proof does not involve the heat capacities of the blocks, it is 

also true for cases where the heat capacities are not constants. 

The proof process above actually corresponds to an 

intuitive image of integral (see figure 1a). The process may be 

represented for each block in the 1/T–Q diagram by a column 

with height given by 1/T and width indicating the heat quality 

variation (namely Q0) for the considered block. In addition, 

the greatest height 1/T(eq) for the initially hotter block is equal 

to the smallest height for the initially colder block, and the 

area under these curves are the entropy change of the two 

blocks respectively. Thus, one must conclude that the area of 

the column of the initially colder block (corresponding to the 

entropy variation of this block) must be larger than that for the 

initially hotter block (note that Q{cold}=-Q{hot}=Q0). 

3.3. Another Equivalent Proof by T-S Diagram 

One interesting proof can be provided by using the 

temperature-entropy diagram (see figure 1b). Its essence is the 

same as above, both make use of the heat absorbed by the 

initially colder block equals to the heat emitted by the initially 

hotter block, in the meanwhile, the temperature of both is 

monotonous and continuous. The quasi-static process may be 

represented for each block in the T-S diagram by a column 

with height given by T and width indicating the entropy 

variation (namely dS) for the considered block. In addition, 

the greatest height T(eq) for the initially colder block is equal 

to the smallest height for the initially hotter block, and the area 

under these curves must be the same due to energy balance 

(note that Q{cold}=-Q{hot} yet). Thus, one must conclude 

that the width of the column of the initially colder block 

(corresponding to the entropy variation of this block) must be 

larger than that for the initially hotter block. 

 
Figure 1. 1/T-Q diagram and T-S diagram. 
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4. Another proof of Inequality (6) 

(Geometric Method) 

In teaching, it has been found that many students were still 

interested in the proof of inequality (5) or (6). In order to meet 

the learning enthusiasm of beginners for mathematical 

derivation, I provide a geometric method below to prove 

inequality (6) (still based on the concavity of the function). 

To prove the validity of the inequality, the logarithmic 

function y=lnx curve is shown in figure 2. For any γ > 0, we 

can always make a straight line PQ intersecting function curve 

at point F and make the distance from point B (the projection 

of F on the x axis) to point P equal to γ (i.e. | |PB γ= ), so that 

the abscissa of point B is γ + 1, and the ordinate of point F (i.e. 

height | |BF ) is ln(1 )γ+ . And because 
1

0 1
r

< < , for any r, 

we can always find a point A between P and B, so that 

1 1
PA PB

r r
γ= = , that is, the abscissa of point A is 

1
1+

r
γ . 

In this way, the ordinate of point E (i.e. | |AE ) on the function 

curve is
1

ln 1+
r

γ 
 
 

. It can be obtained from the similarity 

between ∆ PCA and ∆ PFB that 

1
ln(1 )

PA
AC FB

PB r
γ= = +           (11) 

 
Figure 2. y=lnx curve. 

As can be seen from figure 2, the y=lnx function curve is 

concave (this can also be proved based on the relevant 

knowledge of calculus, which is abbreviated here), so. In this 

way, we prove the correctness of inequality (6). 

5. Conclusion 

For the proof of the entropy increase in the thermalization 

of two blocks, it is easy to make the mistake of considering 

that the entropy change of the system is 

/ /dS dQ T dQ T ′= − +  in a short period of time. It should be 

noted that the entropy-change of irreversible processes cannot 

be calculated by the ratio of heat to temperature. In this paper, 

an appropriate quasi-static process is selected. Without 

changing dQ, 1/T and 1/ T ′  are regarded as some kind of 

weight or distribution function about Q and Q′  respectively, 

which can make the proof very simple and more rigorous. For 

the entropy change presented by Mungan and Lima as the 

result of integration, it can be proved to be positive by the 

geometric method using the concavity of the function, which 

is more intuitive and easier to understand. 
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